{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Uczenie maszynowe\n",
"# 2. Regresja liniowa – część 1"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 2.1. Funkcja kosztu"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Zadanie\n",
"Znając $x$ – ludność miasta, należy przewidzieć $y$ – dochód firmy transportowej.\n",
"\n",
"(Dane pochodzą z kursu „Machine Learning”, Andrew Ng, Coursera)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"**Uwaga**: Ponieważ ten przykład ma być tak prosty, jak to tylko możliwe, ludność miasta podana jest w dziesiątkach tysięcy mieszkańców, a dochód firmy w dziesiątkach tysięcy dolarów. Dzięki temu funkcja kosztu obliczona w dalszej części wykładu będzie osiągać wartości, które łatwo przedstawić na wykresie."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import ipywidgets as widgets\n",
"\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = \"svg\"\n",
"\n",
"from IPython.display import display, Math, Latex"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Dane"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" x y\n",
"0 6.1101 17.59200\n",
"1 5.5277 9.13020\n",
"2 8.5186 13.66200\n",
"3 7.0032 11.85400\n",
"4 5.8598 6.82330\n",
".. ... ...\n",
"75 6.5479 0.29678\n",
"76 7.5386 3.88450\n",
"77 5.0365 5.70140\n",
"78 10.2740 6.75260\n",
"79 5.1077 2.05760\n",
"\n",
"[80 rows x 2 columns]\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"data = pd.read_csv(\"data1_train.csv\", names=[\"x\", \"y\"])\n",
"print(data)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"x = data[\"x\"].to_numpy()\n",
"y = data[\"y\"].to_numpy()\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Hipoteza i parametry modelu"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"Jak przewidzieć $y$ na podstawie danego $x$? W celu odpowiedzi na to pytanie będziemy starać się znaleźć taką funkcję $h(x)$, która będzie najlepiej obrazować zależność między $x$ a $y$, tj. $y \\sim h(x)$.\n",
"\n",
"Zacznijmy od najprostszego przypadku, kiedy $h(x)$ jest po prostu funkcją liniową. Ogólny wzór funkcji liniowej to"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"$$ h(x) = a \\, x + b $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"Pamiętajmy jednak, że współczynniki $a$ i $b$ nie są w tej chwili dane z góry – naszym zadaniem właśnie będzie znalezienie takich ich wartości, żeby $h(x)$ było „możliwie jak najbliżej” $y$ (co właściwie oznacza to sformułowanie, wyjaśnię potem)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Poszukiwaną funkcję $h$ będziemy nazywać **funkcją hipotezy**, a jej współczynniki – **parametrami modelu**."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"W teorii uczenia maszynowego parametry modelu oznacza się na ogół grecką literą $\\theta$ z odpowiednimi indeksami, dlatego powyższy wzór opisujący liniową funkcję hipotezy zapiszemy jako\n",
"$$ h(x) = \\theta_0 + \\theta_1 x $$\n",
"\n",
"**Parametry modelu** tworzą wektor, który oznaczymy po prostu przez $\\theta$:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"$$ \\theta = \\left[\\begin{array}{c}\\theta_0\\\\ \\theta_1\\end{array}\\right] $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"Żeby podkreślić fakt, że funkcja hipotezy zależy od parametrów modelu, będziemy pisać $h_\\theta$ zamiast $h$:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"$$ h_{\\theta}(x) = \\theta_0 + \\theta_1 x $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"Przyjrzyjmy się teraz, jak wyglądają dane, które mamy modelować:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"Na poniższym wykresie możesz spróbować ręcznie dopasować parametry modelu $\\theta_0$ i $\\theta_1$ tak, aby jak najlepiej modelowały zależność między $x$ a $y$:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"# Funkcje rysujące wykres kropkowy oraz prostą regresyjną\n",
"\n",
"\n",
"def regdots(x, y):\n",
" fig = plt.figure(figsize=(16 * 0.6, 9 * 0.6))\n",
" ax = fig.add_subplot(111)\n",
" fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)\n",
" ax.scatter(x, y, c=\"r\", label=\"Dane\")\n",
"\n",
" ax.set_xlabel(\"Wielkość miejscowości\")\n",
" ax.set_ylabel(\"Dochód firmy\")\n",
" ax.margins(0.05, 0.05)\n",
" plt.ylim(min(y) - 1, max(y) + 1)\n",
" plt.xlim(min(x) - 1, max(x) + 1)\n",
" return fig\n",
"\n",
"\n",
"def regline(fig, fun, theta, x):\n",
" ax = fig.axes[0]\n",
" x0, x1 = min(x), max(x)\n",
" X = [x0, x1]\n",
" Y = [fun(theta, x) for x in X]\n",
" ax.plot(\n",
" X,\n",
" Y,\n",
" linewidth=\"2\",\n",
" label=(\n",
" r\"$y={theta0}{op}{theta1}x$\".format(\n",
" theta0=theta[0],\n",
" theta1=(theta[1] if theta[1] >= 0 else -theta[1]),\n",
" op=\"+\" if theta[1] >= 0 else \"-\",\n",
" )\n",
" ),\n",
" )\n",
"\n",
"\n",
"def legend(fig):\n",
" ax = fig.axes[0]\n",
" handles, labels = ax.get_legend_handles_labels()\n",
" # try-except block is a fix for a bug in Poly3DCollection\n",
" try:\n",
" fig.legend(handles, labels, fontsize=\"15\", loc=\"lower right\")\n",
" except AttributeError:\n",
" pass\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/svg+xml": "\n\n\n",
"text/plain": [
"