2.16.1 1.2.0 3.2.1 1.23.5 1.5.2 C:\Users\obses\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\preprocessing\_encoders.py:808: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value. warnings.warn( C:\Users\obses\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\src\layers\core\dense.py:86: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. super().__init__(activity_regularizer=activity_regularizer, **kwargs) Epoch 1/100 2/2 - 1s - 340ms/step - accuracy: 0.4390 - loss: 2.1215 - val_accuracy: 0.6429 - val_loss: 2.0350 Epoch 2/100 2/2 - 0s - 23ms/step - accuracy: 0.3659 - loss: 2.0694 - val_accuracy: 0.7143 - val_loss: 2.0104 Epoch 3/100 2/2 - 0s - 22ms/step - accuracy: 0.3659 - loss: 2.1309 - val_accuracy: 0.8214 - val_loss: 1.9882 Epoch 4/100 2/2 - 0s - 23ms/step - accuracy: 0.4390 - loss: 2.0289 - val_accuracy: 0.8214 - val_loss: 1.9593 Epoch 5/100 2/2 - 0s - 21ms/step - accuracy: 0.6341 - loss: 1.9654 - val_accuracy: 0.8214 - val_loss: 1.9378 Epoch 6/100 2/2 - 0s - 22ms/step - accuracy: 0.6098 - loss: 2.0383 - val_accuracy: 0.8214 - val_loss: 1.9154 Epoch 7/100 2/2 - 0s - 22ms/step - accuracy: 0.6098 - loss: 2.0238 - val_accuracy: 0.8214 - val_loss: 1.8964 Epoch 8/100 2/2 - 0s - 23ms/step - accuracy: 0.6098 - loss: 1.9397 - val_accuracy: 0.8571 - val_loss: 1.8766 Epoch 9/100 2/2 - 0s - 25ms/step - accuracy: 0.5366 - loss: 1.9641 - val_accuracy: 0.8571 - val_loss: 1.8561 Epoch 10/100 2/2 - 0s - 23ms/step - accuracy: 0.5610 - loss: 1.9581 - val_accuracy: 0.8571 - val_loss: 1.8380 Epoch 11/100 2/2 - 0s - 23ms/step - accuracy: 0.7561 - loss: 1.9044 - val_accuracy: 0.8571 - val_loss: 1.8207 Epoch 12/100 2/2 - 0s - 23ms/step - accuracy: 0.5854 - loss: 1.9392 - val_accuracy: 0.8571 - val_loss: 1.8004 Epoch 13/100 2/2 - 0s - 24ms/step - accuracy: 0.7073 - loss: 1.8718 - val_accuracy: 0.8571 - val_loss: 1.7812 Epoch 14/100 2/2 - 0s - 22ms/step - accuracy: 0.7561 - loss: 1.8057 - val_accuracy: 0.8571 - val_loss: 1.7620 Epoch 15/100 2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.8354 - val_accuracy: 0.8571 - val_loss: 1.7440 Epoch 16/100 2/2 - 0s - 24ms/step - accuracy: 0.7073 - loss: 1.8501 - val_accuracy: 0.8571 - val_loss: 1.7269 Epoch 17/100 2/2 - 0s - 24ms/step - accuracy: 0.7561 - loss: 1.7831 - val_accuracy: 0.8571 - val_loss: 1.7084 Epoch 18/100 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.7120 - val_accuracy: 0.8571 - val_loss: 1.6931 Epoch 19/100 2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.8020 - val_accuracy: 0.8571 - val_loss: 1.6786 Epoch 20/100 2/2 - 0s - 24ms/step - accuracy: 0.8049 - loss: 1.7531 - val_accuracy: 0.8571 - val_loss: 1.6630 Epoch 21/100 2/2 - 0s - 21ms/step - accuracy: 0.7561 - loss: 1.7808 - val_accuracy: 0.8571 - val_loss: 1.6489 Epoch 22/100 2/2 - 0s - 21ms/step - accuracy: 0.7561 - loss: 1.7794 - val_accuracy: 0.8571 - val_loss: 1.6352 Epoch 23/100 2/2 - 0s - 23ms/step - accuracy: 0.7805 - loss: 1.6697 - val_accuracy: 0.8571 - val_loss: 1.6184 Epoch 24/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.6814 - val_accuracy: 0.8571 - val_loss: 1.6058 Epoch 25/100 2/2 - 0s - 29ms/step - accuracy: 0.8293 - loss: 1.6687 - val_accuracy: 0.8571 - val_loss: 1.5919 Epoch 26/100 2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.7052 - val_accuracy: 0.8571 - val_loss: 1.5786 Epoch 27/100 2/2 - 0s - 21ms/step - accuracy: 0.8293 - loss: 1.6147 - val_accuracy: 0.8571 - val_loss: 1.5663 Epoch 28/100 2/2 - 0s - 21ms/step - accuracy: 0.7805 - loss: 1.6207 - val_accuracy: 0.8571 - val_loss: 1.5529 Epoch 29/100 2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5964 - val_accuracy: 0.8571 - val_loss: 1.5413 Epoch 30/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.6258 - val_accuracy: 0.8571 - val_loss: 1.5294 Epoch 31/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.5512 - val_accuracy: 0.8571 - val_loss: 1.5175 Epoch 32/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.6674 - val_accuracy: 0.8571 - val_loss: 1.5070 Epoch 33/100 2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5848 - val_accuracy: 0.8571 - val_loss: 1.4977 Epoch 34/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.5467 - val_accuracy: 0.8571 - val_loss: 1.4869 Epoch 35/100 2/2 - 0s - 20ms/step - accuracy: 0.8293 - loss: 1.6244 - val_accuracy: 0.8571 - val_loss: 1.4778 Epoch 36/100 2/2 - 0s - 24ms/step - accuracy: 0.8293 - loss: 1.5275 - val_accuracy: 0.8571 - val_loss: 1.4672 Epoch 37/100 2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.7105 - val_accuracy: 0.8571 - val_loss: 1.4595 Epoch 38/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.6137 - val_accuracy: 0.8571 - val_loss: 1.4509 Epoch 39/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.5726 - val_accuracy: 0.8571 - val_loss: 1.4425 Epoch 40/100 2/2 - 0s - 21ms/step - accuracy: 0.8293 - loss: 1.5345 - val_accuracy: 0.8571 - val_loss: 1.4347 Epoch 41/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.5689 - val_accuracy: 0.8571 - val_loss: 1.4269 Epoch 42/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4239 - val_accuracy: 0.8571 - val_loss: 1.4175 Epoch 43/100 2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5922 - val_accuracy: 0.8571 - val_loss: 1.4099 Epoch 44/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.5006 - val_accuracy: 0.8571 - val_loss: 1.4021 Epoch 45/100 2/2 - 0s - 21ms/step - accuracy: 0.8049 - loss: 1.4858 - val_accuracy: 0.8571 - val_loss: 1.3944 Epoch 46/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4769 - val_accuracy: 0.8571 - val_loss: 1.3874 Epoch 47/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4211 - val_accuracy: 0.8571 - val_loss: 1.3796 Epoch 48/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4060 - val_accuracy: 0.8571 - val_loss: 1.3717 Epoch 49/100 2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.4741 - val_accuracy: 0.8571 - val_loss: 1.3652 Epoch 50/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4989 - val_accuracy: 0.8571 - val_loss: 1.3588 Epoch 51/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4718 - val_accuracy: 0.8571 - val_loss: 1.3521 Epoch 52/100 2/2 - 0s - 24ms/step - accuracy: 0.8293 - loss: 1.4712 - val_accuracy: 0.8571 - val_loss: 1.3482 Epoch 53/100 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.3657 - val_accuracy: 0.8571 - val_loss: 1.3425 Epoch 54/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3847 - val_accuracy: 0.8571 - val_loss: 1.3366 Epoch 55/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3766 - val_accuracy: 0.8571 - val_loss: 1.3315 Epoch 56/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4275 - val_accuracy: 0.8571 - val_loss: 1.3253 Epoch 57/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4709 - val_accuracy: 0.8571 - val_loss: 1.3209 Epoch 58/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4226 - val_accuracy: 0.8571 - val_loss: 1.3176 Epoch 59/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4491 - val_accuracy: 0.8571 - val_loss: 1.3126 Epoch 60/100 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.4165 - val_accuracy: 0.8571 - val_loss: 1.3073 Epoch 61/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3914 - val_accuracy: 0.8571 - val_loss: 1.3027 Epoch 62/100 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3560 - val_accuracy: 0.8571 - val_loss: 1.2974 Epoch 63/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3432 - val_accuracy: 0.8571 - val_loss: 1.2915 Epoch 64/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3833 - val_accuracy: 0.8571 - val_loss: 1.2866 Epoch 65/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4477 - val_accuracy: 0.8571 - val_loss: 1.2834 Epoch 66/100 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3054 - val_accuracy: 0.8571 - val_loss: 1.2794 Epoch 67/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2840 - val_accuracy: 0.8571 - val_loss: 1.2742 Epoch 68/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4320 - val_accuracy: 0.8571 - val_loss: 1.2703 Epoch 69/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4165 - val_accuracy: 0.8571 - val_loss: 1.2664 Epoch 70/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3210 - val_accuracy: 0.8571 - val_loss: 1.2617 Epoch 71/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3698 - val_accuracy: 0.8571 - val_loss: 1.2580 Epoch 72/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3679 - val_accuracy: 0.8571 - val_loss: 1.2546 Epoch 73/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3647 - val_accuracy: 0.8571 - val_loss: 1.2506 Epoch 74/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3088 - val_accuracy: 0.8571 - val_loss: 1.2465 Epoch 75/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3304 - val_accuracy: 0.8571 - val_loss: 1.2425 Epoch 76/100 2/2 - 0s - 29ms/step - accuracy: 0.8537 - loss: 1.2813 - val_accuracy: 0.8571 - val_loss: 1.2389 Epoch 77/100 2/2 - 0s - 28ms/step - accuracy: 0.8537 - loss: 1.3477 - val_accuracy: 0.8571 - val_loss: 1.2352 Epoch 78/100 2/2 - 0s - 26ms/step - accuracy: 0.8537 - loss: 1.3885 - val_accuracy: 0.8571 - val_loss: 1.2315 Epoch 79/100 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2939 - val_accuracy: 0.8571 - val_loss: 1.2280 Epoch 80/100 2/2 - 0s - 26ms/step - accuracy: 0.8537 - loss: 1.3508 - val_accuracy: 0.8571 - val_loss: 1.2254 Epoch 81/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3219 - val_accuracy: 0.8571 - val_loss: 1.2223 Epoch 82/100 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.3559 - val_accuracy: 0.8571 - val_loss: 1.2190 Epoch 83/100 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3289 - val_accuracy: 0.8571 - val_loss: 1.2159 Epoch 84/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1656 - val_accuracy: 0.8571 - val_loss: 1.2123 Epoch 85/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2954 - val_accuracy: 0.8571 - val_loss: 1.2088 Epoch 86/100 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2298 - val_accuracy: 0.8571 - val_loss: 1.2058 Epoch 87/100 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3323 - val_accuracy: 0.8571 - val_loss: 1.2037 Epoch 88/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3758 - val_accuracy: 0.8571 - val_loss: 1.2010 Epoch 89/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3587 - val_accuracy: 0.8571 - val_loss: 1.1981 Epoch 90/100 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3240 - val_accuracy: 0.8571 - val_loss: 1.1954 Epoch 91/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2884 - val_accuracy: 0.8571 - val_loss: 1.1922 Epoch 92/100 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3293 - val_accuracy: 0.8571 - val_loss: 1.1901 Epoch 93/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2706 - val_accuracy: 0.8571 - val_loss: 1.1879 Epoch 94/100 2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.2715 - val_accuracy: 0.8571 - val_loss: 1.1848 Epoch 95/100 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2628 - val_accuracy: 0.8571 - val_loss: 1.1818 Epoch 96/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2770 - val_accuracy: 0.8571 - val_loss: 1.1786 Epoch 97/100 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3039 - val_accuracy: 0.8571 - val_loss: 1.1762 Epoch 98/100 2/2 - 0s - 26ms/step - accuracy: 0.8537 - loss: 1.2908 - val_accuracy: 0.8571 - val_loss: 1.1731 Epoch 99/100 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3510 - val_accuracy: 0.8571 - val_loss: 1.1707 Epoch 100/100 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2447 - val_accuracy: 0.8571 - val_loss: 1.1683 1/1 - 0s - 26ms/step - accuracy: 0.8571 - loss: 1.1683 [0.6428571343421936, 0.7142857313156128, 0.8214285969734192, 0.8214285969734192, 0.8214285969734192, 0.8214285969734192, 0.8214285969734192, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064] Dokładność testowa: 85.71% 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.8571 - loss: 1.1683 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 19ms/step - accuracy: 0.8571 - loss: 1.1683