2.16.1 1.2.0 3.2.1 1.23.5 1.5.2 C:\Users\obses\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\preprocessing\_encoders.py:808: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value. warnings.warn( C:\Users\obses\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\src\layers\core\dense.py:86: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. super().__init__(activity_regularizer=activity_regularizer, **kwargs) Epoch 1/200 2/2 - 1s - 341ms/step - accuracy: 0.2195 - loss: 2.1532 - val_accuracy: 0.1071 - val_loss: 2.0147 Epoch 2/200 2/2 - 0s - 22ms/step - accuracy: 0.2683 - loss: 2.0820 - val_accuracy: 0.1786 - val_loss: 1.9722 Epoch 3/200 2/2 - 0s - 21ms/step - accuracy: 0.3171 - loss: 2.0352 - val_accuracy: 0.2500 - val_loss: 1.9284 Epoch 4/200 2/2 - 0s - 23ms/step - accuracy: 0.3902 - loss: 2.0307 - val_accuracy: 0.2500 - val_loss: 1.8926 Epoch 5/200 2/2 - 0s - 22ms/step - accuracy: 0.3415 - loss: 2.0465 - val_accuracy: 0.4286 - val_loss: 1.8532 Epoch 6/200 2/2 - 0s - 25ms/step - accuracy: 0.4878 - loss: 1.9187 - val_accuracy: 0.6786 - val_loss: 1.8218 Epoch 7/200 2/2 - 0s - 23ms/step - accuracy: 0.4878 - loss: 1.9450 - val_accuracy: 0.7500 - val_loss: 1.7915 Epoch 8/200 2/2 - 0s - 28ms/step - accuracy: 0.4634 - loss: 1.9840 - val_accuracy: 0.8571 - val_loss: 1.7630 Epoch 9/200 2/2 - 0s - 25ms/step - accuracy: 0.5366 - loss: 1.8964 - val_accuracy: 0.8571 - val_loss: 1.7411 Epoch 10/200 2/2 - 0s - 24ms/step - accuracy: 0.6098 - loss: 1.8146 - val_accuracy: 0.8571 - val_loss: 1.7117 Epoch 11/200 2/2 - 0s - 22ms/step - accuracy: 0.6341 - loss: 1.7571 - val_accuracy: 0.8571 - val_loss: 1.6873 Epoch 12/200 2/2 - 0s - 23ms/step - accuracy: 0.6341 - loss: 1.7847 - val_accuracy: 0.8571 - val_loss: 1.6686 Epoch 13/200 2/2 - 0s - 25ms/step - accuracy: 0.6585 - loss: 1.8141 - val_accuracy: 0.8571 - val_loss: 1.6528 Epoch 14/200 2/2 - 0s - 23ms/step - accuracy: 0.6098 - loss: 1.8549 - val_accuracy: 0.8571 - val_loss: 1.6383 Epoch 15/200 2/2 - 0s - 22ms/step - accuracy: 0.7561 - loss: 1.7476 - val_accuracy: 0.8571 - val_loss: 1.6207 Epoch 16/200 2/2 - 0s - 26ms/step - accuracy: 0.7561 - loss: 1.7351 - val_accuracy: 0.8571 - val_loss: 1.6039 Epoch 17/200 2/2 - 0s - 23ms/step - accuracy: 0.7561 - loss: 1.7050 - val_accuracy: 0.8571 - val_loss: 1.5861 Epoch 18/200 2/2 - 0s - 22ms/step - accuracy: 0.7317 - loss: 1.6731 - val_accuracy: 0.8571 - val_loss: 1.5715 Epoch 19/200 2/2 - 0s - 22ms/step - accuracy: 0.7073 - loss: 1.7423 - val_accuracy: 0.8571 - val_loss: 1.5589 Epoch 20/200 2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.6414 - val_accuracy: 0.8571 - val_loss: 1.5441 Epoch 21/200 2/2 - 0s - 21ms/step - accuracy: 0.8293 - loss: 1.6985 - val_accuracy: 0.8571 - val_loss: 1.5328 Epoch 22/200 2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.6529 - val_accuracy: 0.8571 - val_loss: 1.5257 Epoch 23/200 2/2 - 0s - 22ms/step - accuracy: 0.7805 - loss: 1.7366 - val_accuracy: 0.8571 - val_loss: 1.5157 Epoch 24/200 2/2 - 0s - 22ms/step - accuracy: 0.7317 - loss: 1.6614 - val_accuracy: 0.8571 - val_loss: 1.5040 Epoch 25/200 2/2 - 0s - 24ms/step - accuracy: 0.7805 - loss: 1.6441 - val_accuracy: 0.8571 - val_loss: 1.4938 Epoch 26/200 2/2 - 0s - 23ms/step - accuracy: 0.7805 - loss: 1.5172 - val_accuracy: 0.8571 - val_loss: 1.4833 Epoch 27/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.6298 - val_accuracy: 0.8571 - val_loss: 1.4746 Epoch 28/200 2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.6074 - val_accuracy: 0.8571 - val_loss: 1.4663 Epoch 29/200 2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.5785 - val_accuracy: 0.8571 - val_loss: 1.4557 Epoch 30/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.5357 - val_accuracy: 0.8571 - val_loss: 1.4468 Epoch 31/200 2/2 - 0s - 24ms/step - accuracy: 0.7805 - loss: 1.6030 - val_accuracy: 0.8571 - val_loss: 1.4381 Epoch 32/200 2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5175 - val_accuracy: 0.8571 - val_loss: 1.4274 Epoch 33/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.5605 - val_accuracy: 0.8571 - val_loss: 1.4181 Epoch 34/200 2/2 - 0s - 23ms/step - accuracy: 0.8049 - loss: 1.5746 - val_accuracy: 0.8571 - val_loss: 1.4086 Epoch 35/200 2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.5316 - val_accuracy: 0.8571 - val_loss: 1.4028 Epoch 36/200 2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.4663 - val_accuracy: 0.8571 - val_loss: 1.3950 Epoch 37/200 2/2 - 0s - 22ms/step - accuracy: 0.7805 - loss: 1.5547 - val_accuracy: 0.8571 - val_loss: 1.3888 Epoch 38/200 2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5016 - val_accuracy: 0.8571 - val_loss: 1.3825 Epoch 39/200 2/2 - 0s - 22ms/step - accuracy: 0.8780 - loss: 1.5481 - val_accuracy: 0.8571 - val_loss: 1.3769 Epoch 40/200 2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.4685 - val_accuracy: 0.8571 - val_loss: 1.3710 Epoch 41/200 2/2 - 0s - 23ms/step - accuracy: 0.8049 - loss: 1.4536 - val_accuracy: 0.8571 - val_loss: 1.3648 Epoch 42/200 2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.5299 - val_accuracy: 0.8571 - val_loss: 1.3620 Epoch 43/200 2/2 - 0s - 22ms/step - accuracy: 0.8780 - loss: 1.4518 - val_accuracy: 0.8571 - val_loss: 1.3558 Epoch 44/200 2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.3933 - val_accuracy: 0.8571 - val_loss: 1.3482 Epoch 45/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4994 - val_accuracy: 0.8571 - val_loss: 1.3430 Epoch 46/200 2/2 - 0s - 24ms/step - accuracy: 0.8049 - loss: 1.5360 - val_accuracy: 0.8571 - val_loss: 1.3383 Epoch 47/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.5738 - val_accuracy: 0.8571 - val_loss: 1.3366 Epoch 48/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4864 - val_accuracy: 0.8571 - val_loss: 1.3335 Epoch 49/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.5336 - val_accuracy: 0.8571 - val_loss: 1.3292 Epoch 50/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4462 - val_accuracy: 0.8571 - val_loss: 1.3244 Epoch 51/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4624 - val_accuracy: 0.8571 - val_loss: 1.3198 Epoch 52/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.4040 - val_accuracy: 0.8571 - val_loss: 1.3156 Epoch 53/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4051 - val_accuracy: 0.8571 - val_loss: 1.3118 Epoch 54/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4144 - val_accuracy: 0.8571 - val_loss: 1.3061 Epoch 55/200 2/2 - 0s - 24ms/step - accuracy: 0.8293 - loss: 1.4836 - val_accuracy: 0.8571 - val_loss: 1.3033 Epoch 56/200 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.4531 - val_accuracy: 0.8571 - val_loss: 1.2983 Epoch 57/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4848 - val_accuracy: 0.8571 - val_loss: 1.2964 Epoch 58/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4361 - val_accuracy: 0.8571 - val_loss: 1.2939 Epoch 59/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.4567 - val_accuracy: 0.8571 - val_loss: 1.2912 Epoch 60/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3697 - val_accuracy: 0.8571 - val_loss: 1.2865 Epoch 61/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4033 - val_accuracy: 0.8571 - val_loss: 1.2813 Epoch 62/200 2/2 - 0s - 30ms/step - accuracy: 0.8537 - loss: 1.4114 - val_accuracy: 0.8571 - val_loss: 1.2804 Epoch 63/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3471 - val_accuracy: 0.8571 - val_loss: 1.2759 Epoch 64/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4630 - val_accuracy: 0.8571 - val_loss: 1.2738 Epoch 65/200 2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.3782 - val_accuracy: 0.8571 - val_loss: 1.2697 Epoch 66/200 2/2 - 0s - 26ms/step - accuracy: 0.8537 - loss: 1.3674 - val_accuracy: 0.8571 - val_loss: 1.2650 Epoch 67/200 2/2 - 0s - 24ms/step - accuracy: 0.8293 - loss: 1.4286 - val_accuracy: 0.8571 - val_loss: 1.2608 Epoch 68/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3000 - val_accuracy: 0.8571 - val_loss: 1.2573 Epoch 69/200 2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.4976 - val_accuracy: 0.8571 - val_loss: 1.2559 Epoch 70/200 2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.3845 - val_accuracy: 0.8571 - val_loss: 1.2551 Epoch 71/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3196 - val_accuracy: 0.8571 - val_loss: 1.2515 Epoch 72/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3727 - val_accuracy: 0.8571 - val_loss: 1.2476 Epoch 73/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4068 - val_accuracy: 0.8571 - val_loss: 1.2452 Epoch 74/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3918 - val_accuracy: 0.8571 - val_loss: 1.2443 Epoch 75/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3303 - val_accuracy: 0.8571 - val_loss: 1.2417 Epoch 76/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2839 - val_accuracy: 0.8571 - val_loss: 1.2387 Epoch 77/200 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.3413 - val_accuracy: 0.8571 - val_loss: 1.2357 Epoch 78/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3142 - val_accuracy: 0.8571 - val_loss: 1.2324 Epoch 79/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2841 - val_accuracy: 0.8571 - val_loss: 1.2303 Epoch 80/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2535 - val_accuracy: 0.8571 - val_loss: 1.2264 Epoch 81/200 2/2 - 0s - 25ms/step - accuracy: 0.8293 - loss: 1.3405 - val_accuracy: 0.8571 - val_loss: 1.2234 Epoch 82/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3469 - val_accuracy: 0.8571 - val_loss: 1.2209 Epoch 83/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2764 - val_accuracy: 0.8571 - val_loss: 1.2176 Epoch 84/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3213 - val_accuracy: 0.8571 - val_loss: 1.2163 Epoch 85/200 2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.3561 - val_accuracy: 0.8571 - val_loss: 1.2138 Epoch 86/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3907 - val_accuracy: 0.8571 - val_loss: 1.2119 Epoch 87/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3074 - val_accuracy: 0.8571 - val_loss: 1.2087 Epoch 88/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2177 - val_accuracy: 0.8571 - val_loss: 1.2045 Epoch 89/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.2806 - val_accuracy: 0.8571 - val_loss: 1.2026 Epoch 90/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2198 - val_accuracy: 0.8571 - val_loss: 1.1989 Epoch 91/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3314 - val_accuracy: 0.8571 - val_loss: 1.1972 Epoch 92/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3292 - val_accuracy: 0.8571 - val_loss: 1.1946 Epoch 93/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2781 - val_accuracy: 0.8571 - val_loss: 1.1925 Epoch 94/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3490 - val_accuracy: 0.8571 - val_loss: 1.1915 Epoch 95/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3358 - val_accuracy: 0.8571 - val_loss: 1.1894 Epoch 96/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3639 - val_accuracy: 0.8571 - val_loss: 1.1884 Epoch 97/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3290 - val_accuracy: 0.8571 - val_loss: 1.1859 Epoch 98/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2283 - val_accuracy: 0.8571 - val_loss: 1.1826 Epoch 99/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1849 - val_accuracy: 0.8571 - val_loss: 1.1794 Epoch 100/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2317 - val_accuracy: 0.8571 - val_loss: 1.1760 Epoch 101/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2240 - val_accuracy: 0.8571 - val_loss: 1.1737 Epoch 102/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3227 - val_accuracy: 0.8571 - val_loss: 1.1733 Epoch 103/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2884 - val_accuracy: 0.8571 - val_loss: 1.1714 Epoch 104/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2427 - val_accuracy: 0.8571 - val_loss: 1.1698 Epoch 105/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2661 - val_accuracy: 0.8571 - val_loss: 1.1673 Epoch 106/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2791 - val_accuracy: 0.8571 - val_loss: 1.1659 Epoch 107/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3218 - val_accuracy: 0.8571 - val_loss: 1.1651 Epoch 108/200 2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.2642 - val_accuracy: 0.8571 - val_loss: 1.1631 Epoch 109/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2632 - val_accuracy: 0.8571 - val_loss: 1.1618 Epoch 110/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2707 - val_accuracy: 0.8571 - val_loss: 1.1596 Epoch 111/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3358 - val_accuracy: 0.8571 - val_loss: 1.1585 Epoch 112/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2766 - val_accuracy: 0.8571 - val_loss: 1.1573 Epoch 113/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2075 - val_accuracy: 0.8571 - val_loss: 1.1543 Epoch 114/200 2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.2420 - val_accuracy: 0.8571 - val_loss: 1.1516 Epoch 115/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1918 - val_accuracy: 0.8571 - val_loss: 1.1505 Epoch 116/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2107 - val_accuracy: 0.8571 - val_loss: 1.1481 Epoch 117/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1907 - val_accuracy: 0.8571 - val_loss: 1.1456 Epoch 118/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1850 - val_accuracy: 0.8571 - val_loss: 1.1431 Epoch 119/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1576 - val_accuracy: 0.8571 - val_loss: 1.1403 Epoch 120/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2675 - val_accuracy: 0.8571 - val_loss: 1.1398 Epoch 121/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2585 - val_accuracy: 0.8571 - val_loss: 1.1380 Epoch 122/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2300 - val_accuracy: 0.8571 - val_loss: 1.1363 Epoch 123/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2724 - val_accuracy: 0.8571 - val_loss: 1.1346 Epoch 124/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2943 - val_accuracy: 0.8571 - val_loss: 1.1329 Epoch 125/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2581 - val_accuracy: 0.8571 - val_loss: 1.1324 Epoch 126/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2611 - val_accuracy: 0.8571 - val_loss: 1.1317 Epoch 127/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2528 - val_accuracy: 0.8571 - val_loss: 1.1301 Epoch 128/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1598 - val_accuracy: 0.8571 - val_loss: 1.1273 Epoch 129/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2340 - val_accuracy: 0.8571 - val_loss: 1.1253 Epoch 130/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1844 - val_accuracy: 0.8571 - val_loss: 1.1228 Epoch 131/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.2072 - val_accuracy: 0.8571 - val_loss: 1.1218 Epoch 132/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.2265 - val_accuracy: 0.8571 - val_loss: 1.1200 Epoch 133/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0870 - val_accuracy: 0.8571 - val_loss: 1.1173 Epoch 134/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1787 - val_accuracy: 0.8571 - val_loss: 1.1153 Epoch 135/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1851 - val_accuracy: 0.8571 - val_loss: 1.1136 Epoch 136/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1922 - val_accuracy: 0.8571 - val_loss: 1.1127 Epoch 137/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2262 - val_accuracy: 0.8571 - val_loss: 1.1107 Epoch 138/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2387 - val_accuracy: 0.8571 - val_loss: 1.1089 Epoch 139/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2239 - val_accuracy: 0.8571 - val_loss: 1.1076 Epoch 140/200 2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2184 - val_accuracy: 0.8571 - val_loss: 1.1061 Epoch 141/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1624 - val_accuracy: 0.8571 - val_loss: 1.1037 Epoch 142/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1146 - val_accuracy: 0.8571 - val_loss: 1.1016 Epoch 143/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1702 - val_accuracy: 0.8571 - val_loss: 1.1000 Epoch 144/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1891 - val_accuracy: 0.8571 - val_loss: 1.0976 Epoch 145/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1246 - val_accuracy: 0.8571 - val_loss: 1.0954 Epoch 146/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.1617 - val_accuracy: 0.8571 - val_loss: 1.0933 Epoch 147/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1355 - val_accuracy: 0.8571 - val_loss: 1.0918 Epoch 148/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1685 - val_accuracy: 0.8571 - val_loss: 1.0902 Epoch 149/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1003 - val_accuracy: 0.8571 - val_loss: 1.0878 Epoch 150/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2653 - val_accuracy: 0.8571 - val_loss: 1.0869 Epoch 151/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1866 - val_accuracy: 0.8571 - val_loss: 1.0850 Epoch 152/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1047 - val_accuracy: 0.8571 - val_loss: 1.0823 Epoch 153/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0743 - val_accuracy: 0.8571 - val_loss: 1.0803 Epoch 154/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1167 - val_accuracy: 0.8571 - val_loss: 1.0783 Epoch 155/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2002 - val_accuracy: 0.8571 - val_loss: 1.0778 Epoch 156/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1217 - val_accuracy: 0.8571 - val_loss: 1.0753 Epoch 157/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1792 - val_accuracy: 0.8571 - val_loss: 1.0732 Epoch 158/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0793 - val_accuracy: 0.8571 - val_loss: 1.0709 Epoch 159/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1644 - val_accuracy: 0.8571 - val_loss: 1.0701 Epoch 160/200 2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.2049 - val_accuracy: 0.8571 - val_loss: 1.0684 Epoch 161/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0399 - val_accuracy: 0.8571 - val_loss: 1.0663 Epoch 162/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0994 - val_accuracy: 0.8571 - val_loss: 1.0644 Epoch 163/200 2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.1512 - val_accuracy: 0.8571 - val_loss: 1.0633 Epoch 164/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2293 - val_accuracy: 0.8571 - val_loss: 1.0629 Epoch 165/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0654 - val_accuracy: 0.8571 - val_loss: 1.0609 Epoch 166/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1464 - val_accuracy: 0.8571 - val_loss: 1.0593 Epoch 167/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0558 - val_accuracy: 0.8571 - val_loss: 1.0571 Epoch 168/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1222 - val_accuracy: 0.8571 - val_loss: 1.0559 Epoch 169/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1631 - val_accuracy: 0.8571 - val_loss: 1.0545 Epoch 170/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1823 - val_accuracy: 0.8571 - val_loss: 1.0534 Epoch 171/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1564 - val_accuracy: 0.8571 - val_loss: 1.0521 Epoch 172/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1264 - val_accuracy: 0.8571 - val_loss: 1.0507 Epoch 173/200 2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.1188 - val_accuracy: 0.8571 - val_loss: 1.0501 Epoch 174/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1830 - val_accuracy: 0.8571 - val_loss: 1.0493 Epoch 175/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0920 - val_accuracy: 0.8571 - val_loss: 1.0481 Epoch 176/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0943 - val_accuracy: 0.8571 - val_loss: 1.0460 Epoch 177/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1190 - val_accuracy: 0.8571 - val_loss: 1.0439 Epoch 178/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1286 - val_accuracy: 0.8571 - val_loss: 1.0428 Epoch 179/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0424 - val_accuracy: 0.8571 - val_loss: 1.0410 Epoch 180/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1394 - val_accuracy: 0.8571 - val_loss: 1.0398 Epoch 181/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1651 - val_accuracy: 0.8571 - val_loss: 1.0384 Epoch 182/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0441 - val_accuracy: 0.8571 - val_loss: 1.0364 Epoch 183/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0563 - val_accuracy: 0.8571 - val_loss: 1.0346 Epoch 184/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0919 - val_accuracy: 0.8571 - val_loss: 1.0331 Epoch 185/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1528 - val_accuracy: 0.8571 - val_loss: 1.0317 Epoch 186/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1534 - val_accuracy: 0.8571 - val_loss: 1.0301 Epoch 187/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.0890 - val_accuracy: 0.8571 - val_loss: 1.0286 Epoch 188/200 2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1421 - val_accuracy: 0.8571 - val_loss: 1.0277 Epoch 189/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0819 - val_accuracy: 0.8571 - val_loss: 1.0258 Epoch 190/200 2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1676 - val_accuracy: 0.8571 - val_loss: 1.0250 Epoch 191/200 2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.1186 - val_accuracy: 0.8571 - val_loss: 1.0233 Epoch 192/200 2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.0423 - val_accuracy: 0.8571 - val_loss: 1.0221 Epoch 193/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0493 - val_accuracy: 0.8571 - val_loss: 1.0209 Epoch 194/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1021 - val_accuracy: 0.8571 - val_loss: 1.0196 Epoch 195/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0699 - val_accuracy: 0.8571 - val_loss: 1.0180 Epoch 196/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0480 - val_accuracy: 0.8571 - val_loss: 1.0169 Epoch 197/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0680 - val_accuracy: 0.8571 - val_loss: 1.0154 Epoch 198/200 2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0319 - val_accuracy: 0.8571 - val_loss: 1.0141 Epoch 199/200 2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.0785 - val_accuracy: 0.8571 - val_loss: 1.0121 Epoch 200/200 2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.0730 - val_accuracy: 0.8571 - val_loss: 1.0109 1/1 - 0s - 18ms/step - accuracy: 0.8571 - loss: 1.0109 [0.1071428582072258, 0.1785714328289032, 0.25, 0.25, 0.4285714328289032, 0.6785714030265808, 0.75, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064] Dokładność testowa: 85.71% 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 19ms/step - accuracy: 0.8571 - loss: 1.0109 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 20ms/step - accuracy: 0.8571 - loss: 1.0109