ium_464903/my_runs/2/cout.txt

414 lines
27 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

2.16.1
1.2.0
3.2.1
1.23.5
1.5.2
C:\Users\obses\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\preprocessing\_encoders.py:808: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.
warnings.warn(
C:\Users\obses\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\src\layers\core\dense.py:86: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Epoch 1/200
2/2 - 1s - 341ms/step - accuracy: 0.2195 - loss: 2.1532 - val_accuracy: 0.1071 - val_loss: 2.0147
Epoch 2/200
2/2 - 0s - 22ms/step - accuracy: 0.2683 - loss: 2.0820 - val_accuracy: 0.1786 - val_loss: 1.9722
Epoch 3/200
2/2 - 0s - 21ms/step - accuracy: 0.3171 - loss: 2.0352 - val_accuracy: 0.2500 - val_loss: 1.9284
Epoch 4/200
2/2 - 0s - 23ms/step - accuracy: 0.3902 - loss: 2.0307 - val_accuracy: 0.2500 - val_loss: 1.8926
Epoch 5/200
2/2 - 0s - 22ms/step - accuracy: 0.3415 - loss: 2.0465 - val_accuracy: 0.4286 - val_loss: 1.8532
Epoch 6/200
2/2 - 0s - 25ms/step - accuracy: 0.4878 - loss: 1.9187 - val_accuracy: 0.6786 - val_loss: 1.8218
Epoch 7/200
2/2 - 0s - 23ms/step - accuracy: 0.4878 - loss: 1.9450 - val_accuracy: 0.7500 - val_loss: 1.7915
Epoch 8/200
2/2 - 0s - 28ms/step - accuracy: 0.4634 - loss: 1.9840 - val_accuracy: 0.8571 - val_loss: 1.7630
Epoch 9/200
2/2 - 0s - 25ms/step - accuracy: 0.5366 - loss: 1.8964 - val_accuracy: 0.8571 - val_loss: 1.7411
Epoch 10/200
2/2 - 0s - 24ms/step - accuracy: 0.6098 - loss: 1.8146 - val_accuracy: 0.8571 - val_loss: 1.7117
Epoch 11/200
2/2 - 0s - 22ms/step - accuracy: 0.6341 - loss: 1.7571 - val_accuracy: 0.8571 - val_loss: 1.6873
Epoch 12/200
2/2 - 0s - 23ms/step - accuracy: 0.6341 - loss: 1.7847 - val_accuracy: 0.8571 - val_loss: 1.6686
Epoch 13/200
2/2 - 0s - 25ms/step - accuracy: 0.6585 - loss: 1.8141 - val_accuracy: 0.8571 - val_loss: 1.6528
Epoch 14/200
2/2 - 0s - 23ms/step - accuracy: 0.6098 - loss: 1.8549 - val_accuracy: 0.8571 - val_loss: 1.6383
Epoch 15/200
2/2 - 0s - 22ms/step - accuracy: 0.7561 - loss: 1.7476 - val_accuracy: 0.8571 - val_loss: 1.6207
Epoch 16/200
2/2 - 0s - 26ms/step - accuracy: 0.7561 - loss: 1.7351 - val_accuracy: 0.8571 - val_loss: 1.6039
Epoch 17/200
2/2 - 0s - 23ms/step - accuracy: 0.7561 - loss: 1.7050 - val_accuracy: 0.8571 - val_loss: 1.5861
Epoch 18/200
2/2 - 0s - 22ms/step - accuracy: 0.7317 - loss: 1.6731 - val_accuracy: 0.8571 - val_loss: 1.5715
Epoch 19/200
2/2 - 0s - 22ms/step - accuracy: 0.7073 - loss: 1.7423 - val_accuracy: 0.8571 - val_loss: 1.5589
Epoch 20/200
2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.6414 - val_accuracy: 0.8571 - val_loss: 1.5441
Epoch 21/200
2/2 - 0s - 21ms/step - accuracy: 0.8293 - loss: 1.6985 - val_accuracy: 0.8571 - val_loss: 1.5328
Epoch 22/200
2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.6529 - val_accuracy: 0.8571 - val_loss: 1.5257
Epoch 23/200
2/2 - 0s - 22ms/step - accuracy: 0.7805 - loss: 1.7366 - val_accuracy: 0.8571 - val_loss: 1.5157
Epoch 24/200
2/2 - 0s - 22ms/step - accuracy: 0.7317 - loss: 1.6614 - val_accuracy: 0.8571 - val_loss: 1.5040
Epoch 25/200
2/2 - 0s - 24ms/step - accuracy: 0.7805 - loss: 1.6441 - val_accuracy: 0.8571 - val_loss: 1.4938
Epoch 26/200
2/2 - 0s - 23ms/step - accuracy: 0.7805 - loss: 1.5172 - val_accuracy: 0.8571 - val_loss: 1.4833
Epoch 27/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.6298 - val_accuracy: 0.8571 - val_loss: 1.4746
Epoch 28/200
2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.6074 - val_accuracy: 0.8571 - val_loss: 1.4663
Epoch 29/200
2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.5785 - val_accuracy: 0.8571 - val_loss: 1.4557
Epoch 30/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.5357 - val_accuracy: 0.8571 - val_loss: 1.4468
Epoch 31/200
2/2 - 0s - 24ms/step - accuracy: 0.7805 - loss: 1.6030 - val_accuracy: 0.8571 - val_loss: 1.4381
Epoch 32/200
2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5175 - val_accuracy: 0.8571 - val_loss: 1.4274
Epoch 33/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.5605 - val_accuracy: 0.8571 - val_loss: 1.4181
Epoch 34/200
2/2 - 0s - 23ms/step - accuracy: 0.8049 - loss: 1.5746 - val_accuracy: 0.8571 - val_loss: 1.4086
Epoch 35/200
2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.5316 - val_accuracy: 0.8571 - val_loss: 1.4028
Epoch 36/200
2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.4663 - val_accuracy: 0.8571 - val_loss: 1.3950
Epoch 37/200
2/2 - 0s - 22ms/step - accuracy: 0.7805 - loss: 1.5547 - val_accuracy: 0.8571 - val_loss: 1.3888
Epoch 38/200
2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5016 - val_accuracy: 0.8571 - val_loss: 1.3825
Epoch 39/200
2/2 - 0s - 22ms/step - accuracy: 0.8780 - loss: 1.5481 - val_accuracy: 0.8571 - val_loss: 1.3769
Epoch 40/200
2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.4685 - val_accuracy: 0.8571 - val_loss: 1.3710
Epoch 41/200
2/2 - 0s - 23ms/step - accuracy: 0.8049 - loss: 1.4536 - val_accuracy: 0.8571 - val_loss: 1.3648
Epoch 42/200
2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.5299 - val_accuracy: 0.8571 - val_loss: 1.3620
Epoch 43/200
2/2 - 0s - 22ms/step - accuracy: 0.8780 - loss: 1.4518 - val_accuracy: 0.8571 - val_loss: 1.3558
Epoch 44/200
2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.3933 - val_accuracy: 0.8571 - val_loss: 1.3482
Epoch 45/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4994 - val_accuracy: 0.8571 - val_loss: 1.3430
Epoch 46/200
2/2 - 0s - 24ms/step - accuracy: 0.8049 - loss: 1.5360 - val_accuracy: 0.8571 - val_loss: 1.3383
Epoch 47/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.5738 - val_accuracy: 0.8571 - val_loss: 1.3366
Epoch 48/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4864 - val_accuracy: 0.8571 - val_loss: 1.3335
Epoch 49/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.5336 - val_accuracy: 0.8571 - val_loss: 1.3292
Epoch 50/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4462 - val_accuracy: 0.8571 - val_loss: 1.3244
Epoch 51/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4624 - val_accuracy: 0.8571 - val_loss: 1.3198
Epoch 52/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.4040 - val_accuracy: 0.8571 - val_loss: 1.3156
Epoch 53/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4051 - val_accuracy: 0.8571 - val_loss: 1.3118
Epoch 54/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4144 - val_accuracy: 0.8571 - val_loss: 1.3061
Epoch 55/200
2/2 - 0s - 24ms/step - accuracy: 0.8293 - loss: 1.4836 - val_accuracy: 0.8571 - val_loss: 1.3033
Epoch 56/200
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.4531 - val_accuracy: 0.8571 - val_loss: 1.2983
Epoch 57/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4848 - val_accuracy: 0.8571 - val_loss: 1.2964
Epoch 58/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4361 - val_accuracy: 0.8571 - val_loss: 1.2939
Epoch 59/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.4567 - val_accuracy: 0.8571 - val_loss: 1.2912
Epoch 60/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3697 - val_accuracy: 0.8571 - val_loss: 1.2865
Epoch 61/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4033 - val_accuracy: 0.8571 - val_loss: 1.2813
Epoch 62/200
2/2 - 0s - 30ms/step - accuracy: 0.8537 - loss: 1.4114 - val_accuracy: 0.8571 - val_loss: 1.2804
Epoch 63/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3471 - val_accuracy: 0.8571 - val_loss: 1.2759
Epoch 64/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4630 - val_accuracy: 0.8571 - val_loss: 1.2738
Epoch 65/200
2/2 - 0s - 23ms/step - accuracy: 0.8293 - loss: 1.3782 - val_accuracy: 0.8571 - val_loss: 1.2697
Epoch 66/200
2/2 - 0s - 26ms/step - accuracy: 0.8537 - loss: 1.3674 - val_accuracy: 0.8571 - val_loss: 1.2650
Epoch 67/200
2/2 - 0s - 24ms/step - accuracy: 0.8293 - loss: 1.4286 - val_accuracy: 0.8571 - val_loss: 1.2608
Epoch 68/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3000 - val_accuracy: 0.8571 - val_loss: 1.2573
Epoch 69/200
2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.4976 - val_accuracy: 0.8571 - val_loss: 1.2559
Epoch 70/200
2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.3845 - val_accuracy: 0.8571 - val_loss: 1.2551
Epoch 71/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3196 - val_accuracy: 0.8571 - val_loss: 1.2515
Epoch 72/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3727 - val_accuracy: 0.8571 - val_loss: 1.2476
Epoch 73/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4068 - val_accuracy: 0.8571 - val_loss: 1.2452
Epoch 74/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3918 - val_accuracy: 0.8571 - val_loss: 1.2443
Epoch 75/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3303 - val_accuracy: 0.8571 - val_loss: 1.2417
Epoch 76/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2839 - val_accuracy: 0.8571 - val_loss: 1.2387
Epoch 77/200
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.3413 - val_accuracy: 0.8571 - val_loss: 1.2357
Epoch 78/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3142 - val_accuracy: 0.8571 - val_loss: 1.2324
Epoch 79/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2841 - val_accuracy: 0.8571 - val_loss: 1.2303
Epoch 80/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2535 - val_accuracy: 0.8571 - val_loss: 1.2264
Epoch 81/200
2/2 - 0s - 25ms/step - accuracy: 0.8293 - loss: 1.3405 - val_accuracy: 0.8571 - val_loss: 1.2234
Epoch 82/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3469 - val_accuracy: 0.8571 - val_loss: 1.2209
Epoch 83/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2764 - val_accuracy: 0.8571 - val_loss: 1.2176
Epoch 84/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3213 - val_accuracy: 0.8571 - val_loss: 1.2163
Epoch 85/200
2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.3561 - val_accuracy: 0.8571 - val_loss: 1.2138
Epoch 86/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3907 - val_accuracy: 0.8571 - val_loss: 1.2119
Epoch 87/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3074 - val_accuracy: 0.8571 - val_loss: 1.2087
Epoch 88/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2177 - val_accuracy: 0.8571 - val_loss: 1.2045
Epoch 89/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.2806 - val_accuracy: 0.8571 - val_loss: 1.2026
Epoch 90/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2198 - val_accuracy: 0.8571 - val_loss: 1.1989
Epoch 91/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3314 - val_accuracy: 0.8571 - val_loss: 1.1972
Epoch 92/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3292 - val_accuracy: 0.8571 - val_loss: 1.1946
Epoch 93/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2781 - val_accuracy: 0.8571 - val_loss: 1.1925
Epoch 94/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3490 - val_accuracy: 0.8571 - val_loss: 1.1915
Epoch 95/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3358 - val_accuracy: 0.8571 - val_loss: 1.1894
Epoch 96/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3639 - val_accuracy: 0.8571 - val_loss: 1.1884
Epoch 97/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3290 - val_accuracy: 0.8571 - val_loss: 1.1859
Epoch 98/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2283 - val_accuracy: 0.8571 - val_loss: 1.1826
Epoch 99/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1849 - val_accuracy: 0.8571 - val_loss: 1.1794
Epoch 100/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2317 - val_accuracy: 0.8571 - val_loss: 1.1760
Epoch 101/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2240 - val_accuracy: 0.8571 - val_loss: 1.1737
Epoch 102/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3227 - val_accuracy: 0.8571 - val_loss: 1.1733
Epoch 103/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2884 - val_accuracy: 0.8571 - val_loss: 1.1714
Epoch 104/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2427 - val_accuracy: 0.8571 - val_loss: 1.1698
Epoch 105/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2661 - val_accuracy: 0.8571 - val_loss: 1.1673
Epoch 106/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2791 - val_accuracy: 0.8571 - val_loss: 1.1659
Epoch 107/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3218 - val_accuracy: 0.8571 - val_loss: 1.1651
Epoch 108/200
2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.2642 - val_accuracy: 0.8571 - val_loss: 1.1631
Epoch 109/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2632 - val_accuracy: 0.8571 - val_loss: 1.1618
Epoch 110/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2707 - val_accuracy: 0.8571 - val_loss: 1.1596
Epoch 111/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3358 - val_accuracy: 0.8571 - val_loss: 1.1585
Epoch 112/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2766 - val_accuracy: 0.8571 - val_loss: 1.1573
Epoch 113/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2075 - val_accuracy: 0.8571 - val_loss: 1.1543
Epoch 114/200
2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.2420 - val_accuracy: 0.8571 - val_loss: 1.1516
Epoch 115/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1918 - val_accuracy: 0.8571 - val_loss: 1.1505
Epoch 116/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2107 - val_accuracy: 0.8571 - val_loss: 1.1481
Epoch 117/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1907 - val_accuracy: 0.8571 - val_loss: 1.1456
Epoch 118/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1850 - val_accuracy: 0.8571 - val_loss: 1.1431
Epoch 119/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1576 - val_accuracy: 0.8571 - val_loss: 1.1403
Epoch 120/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2675 - val_accuracy: 0.8571 - val_loss: 1.1398
Epoch 121/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2585 - val_accuracy: 0.8571 - val_loss: 1.1380
Epoch 122/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2300 - val_accuracy: 0.8571 - val_loss: 1.1363
Epoch 123/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2724 - val_accuracy: 0.8571 - val_loss: 1.1346
Epoch 124/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2943 - val_accuracy: 0.8571 - val_loss: 1.1329
Epoch 125/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2581 - val_accuracy: 0.8571 - val_loss: 1.1324
Epoch 126/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2611 - val_accuracy: 0.8571 - val_loss: 1.1317
Epoch 127/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2528 - val_accuracy: 0.8571 - val_loss: 1.1301
Epoch 128/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1598 - val_accuracy: 0.8571 - val_loss: 1.1273
Epoch 129/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2340 - val_accuracy: 0.8571 - val_loss: 1.1253
Epoch 130/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1844 - val_accuracy: 0.8571 - val_loss: 1.1228
Epoch 131/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.2072 - val_accuracy: 0.8571 - val_loss: 1.1218
Epoch 132/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.2265 - val_accuracy: 0.8571 - val_loss: 1.1200
Epoch 133/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0870 - val_accuracy: 0.8571 - val_loss: 1.1173
Epoch 134/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1787 - val_accuracy: 0.8571 - val_loss: 1.1153
Epoch 135/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1851 - val_accuracy: 0.8571 - val_loss: 1.1136
Epoch 136/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1922 - val_accuracy: 0.8571 - val_loss: 1.1127
Epoch 137/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2262 - val_accuracy: 0.8571 - val_loss: 1.1107
Epoch 138/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2387 - val_accuracy: 0.8571 - val_loss: 1.1089
Epoch 139/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2239 - val_accuracy: 0.8571 - val_loss: 1.1076
Epoch 140/200
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2184 - val_accuracy: 0.8571 - val_loss: 1.1061
Epoch 141/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1624 - val_accuracy: 0.8571 - val_loss: 1.1037
Epoch 142/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1146 - val_accuracy: 0.8571 - val_loss: 1.1016
Epoch 143/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1702 - val_accuracy: 0.8571 - val_loss: 1.1000
Epoch 144/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1891 - val_accuracy: 0.8571 - val_loss: 1.0976
Epoch 145/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1246 - val_accuracy: 0.8571 - val_loss: 1.0954
Epoch 146/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.1617 - val_accuracy: 0.8571 - val_loss: 1.0933
Epoch 147/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1355 - val_accuracy: 0.8571 - val_loss: 1.0918
Epoch 148/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1685 - val_accuracy: 0.8571 - val_loss: 1.0902
Epoch 149/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1003 - val_accuracy: 0.8571 - val_loss: 1.0878
Epoch 150/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2653 - val_accuracy: 0.8571 - val_loss: 1.0869
Epoch 151/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1866 - val_accuracy: 0.8571 - val_loss: 1.0850
Epoch 152/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1047 - val_accuracy: 0.8571 - val_loss: 1.0823
Epoch 153/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0743 - val_accuracy: 0.8571 - val_loss: 1.0803
Epoch 154/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1167 - val_accuracy: 0.8571 - val_loss: 1.0783
Epoch 155/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2002 - val_accuracy: 0.8571 - val_loss: 1.0778
Epoch 156/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1217 - val_accuracy: 0.8571 - val_loss: 1.0753
Epoch 157/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1792 - val_accuracy: 0.8571 - val_loss: 1.0732
Epoch 158/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0793 - val_accuracy: 0.8571 - val_loss: 1.0709
Epoch 159/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1644 - val_accuracy: 0.8571 - val_loss: 1.0701
Epoch 160/200
2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.2049 - val_accuracy: 0.8571 - val_loss: 1.0684
Epoch 161/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0399 - val_accuracy: 0.8571 - val_loss: 1.0663
Epoch 162/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0994 - val_accuracy: 0.8571 - val_loss: 1.0644
Epoch 163/200
2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.1512 - val_accuracy: 0.8571 - val_loss: 1.0633
Epoch 164/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.2293 - val_accuracy: 0.8571 - val_loss: 1.0629
Epoch 165/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0654 - val_accuracy: 0.8571 - val_loss: 1.0609
Epoch 166/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1464 - val_accuracy: 0.8571 - val_loss: 1.0593
Epoch 167/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0558 - val_accuracy: 0.8571 - val_loss: 1.0571
Epoch 168/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1222 - val_accuracy: 0.8571 - val_loss: 1.0559
Epoch 169/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1631 - val_accuracy: 0.8571 - val_loss: 1.0545
Epoch 170/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1823 - val_accuracy: 0.8571 - val_loss: 1.0534
Epoch 171/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1564 - val_accuracy: 0.8571 - val_loss: 1.0521
Epoch 172/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1264 - val_accuracy: 0.8571 - val_loss: 1.0507
Epoch 173/200
2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.1188 - val_accuracy: 0.8571 - val_loss: 1.0501
Epoch 174/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1830 - val_accuracy: 0.8571 - val_loss: 1.0493
Epoch 175/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0920 - val_accuracy: 0.8571 - val_loss: 1.0481
Epoch 176/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0943 - val_accuracy: 0.8571 - val_loss: 1.0460
Epoch 177/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1190 - val_accuracy: 0.8571 - val_loss: 1.0439
Epoch 178/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1286 - val_accuracy: 0.8571 - val_loss: 1.0428
Epoch 179/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0424 - val_accuracy: 0.8571 - val_loss: 1.0410
Epoch 180/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1394 - val_accuracy: 0.8571 - val_loss: 1.0398
Epoch 181/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1651 - val_accuracy: 0.8571 - val_loss: 1.0384
Epoch 182/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0441 - val_accuracy: 0.8571 - val_loss: 1.0364
Epoch 183/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0563 - val_accuracy: 0.8571 - val_loss: 1.0346
Epoch 184/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0919 - val_accuracy: 0.8571 - val_loss: 1.0331
Epoch 185/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1528 - val_accuracy: 0.8571 - val_loss: 1.0317
Epoch 186/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1534 - val_accuracy: 0.8571 - val_loss: 1.0301
Epoch 187/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.0890 - val_accuracy: 0.8571 - val_loss: 1.0286
Epoch 188/200
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1421 - val_accuracy: 0.8571 - val_loss: 1.0277
Epoch 189/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.0819 - val_accuracy: 0.8571 - val_loss: 1.0258
Epoch 190/200
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.1676 - val_accuracy: 0.8571 - val_loss: 1.0250
Epoch 191/200
2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.1186 - val_accuracy: 0.8571 - val_loss: 1.0233
Epoch 192/200
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.0423 - val_accuracy: 0.8571 - val_loss: 1.0221
Epoch 193/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0493 - val_accuracy: 0.8571 - val_loss: 1.0209
Epoch 194/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.1021 - val_accuracy: 0.8571 - val_loss: 1.0196
Epoch 195/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0699 - val_accuracy: 0.8571 - val_loss: 1.0180
Epoch 196/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0480 - val_accuracy: 0.8571 - val_loss: 1.0169
Epoch 197/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0680 - val_accuracy: 0.8571 - val_loss: 1.0154
Epoch 198/200
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.0319 - val_accuracy: 0.8571 - val_loss: 1.0141
Epoch 199/200
2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.0785 - val_accuracy: 0.8571 - val_loss: 1.0121
Epoch 200/200
2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.0730 - val_accuracy: 0.8571 - val_loss: 1.0109
1/1 - 0s - 18ms/step - accuracy: 0.8571 - loss: 1.0109
[0.1071428582072258, 0.1785714328289032, 0.25, 0.25, 0.4285714328289032, 0.6785714030265808, 0.75, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064]
Dokładność testowa: 85.71%
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 19ms/step - accuracy: 0.8571 - loss: 1.0109
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 20ms/step - accuracy: 0.8571 - loss: 1.0109