ium_464903/my_runs/_sources/IUM_7_Sacred_9aab3c522aac05d556b75dd3c6ff0693.py

120 lines
3.6 KiB
Python

import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras import regularizers
import numpy as np
import pandas as pd
from datetime import datetime
from importlib.metadata import version
from sacred import Experiment
from sacred.observers import FileStorageObserver
ex = Experiment("464903", interactive=True)
ex.observers.append(FileStorageObserver('my_runs'))
@ex.config
def my_config():
num_epochs = 100
dropout_layer_value = 0.4
@ex.capture
def prepare_info(num_epochs, dropout_layer_value, _run):
_run.info["num_epochs"] = num_epochs
_run.info["dropout_layer_value"] = dropout_layer_value
_run.info["training_ts"] = datetime.now()
@ex.main
def train_and_evaluate(num_epochs, dropout_layer_value, _run):
prepare_info()
ex.open_resource('./lettuce_dataset_updated.csv', "r")
dataset = pd.read_csv('./lettuce_dataset_updated.csv', encoding="ISO-8859-1")
print(version('tensorflow'))
print(version('scikit-learn'))
print(version('keras'))
print(version('numpy'))
print(version('pandas'))
ph_level = dataset['pH Level'].values.tolist()
temp_F = dataset['Temperature (F)'].values.tolist()
humid = dataset['Humidity'].values.tolist()
days = dataset['Growth Days'].values.tolist()
plant_id = dataset['Plant_ID'].values.tolist()
X = []
Y = []
id = plant_id[0]
temp_sum = 0
humid_sum = 0
ph_level_sum = 0
day = 1
for i in range(0, len(plant_id)):
if plant_id[i] == id:
temp_sum += temp_F[i]
humid_sum += humid[i]
ph_level_sum += ph_level[i]
day = days[i]
else:
temp = []
temp.append(temp_sum/day)
temp.append(humid_sum/day)
temp.append(ph_level_sum/day)
X.append(temp)
Y.append(day)
temp_sum = 0
humid_sum = 0
ph_level_sum = 0
day = 1
id = plant_id[i]
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
X = np.array(X)
Y = np.array(Y)
encoder = OneHotEncoder(sparse=False)
y_onehot = encoder.fit_transform(Y.reshape(-1,1))
X_train, X_test, y_train, y_test = train_test_split(X, y_onehot, test_size=0.4, random_state=42)
model = Sequential([
Dense(8, activation='relu', input_dim=3, kernel_regularizer=regularizers.l2(0.04)),
Dropout(dropout_layer_value),
Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.04)),
Dropout(dropout_layer_value),
Dense(4, activation='softmax', kernel_regularizer=regularizers.l2(0.04)),
])
model.compile(optimizer='sgd',
loss='categorical_crossentropy',
metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=num_epochs, validation_data=(X_test, y_test), verbose=2)
test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=2)
print(history.history['val_accuracy'])
_run.log_scalar("train loss", history.history['loss'])
_run.log_scalar("train accuracy", history.history['accuracy'])
_run.log_scalar("test loss", test_loss)
_run.log_scalar("test accuracy", test_accuracy)
print(f"Dokładność testowa: {test_accuracy:.2%}")
model.evaluate(X_test, y_test)[1]
model.save('./model.keras')
ex.add_artifact("./model.keras")
ex.run()
print(my_config())