ium_464903/my_runs/1/cout.txt

214 lines
14 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

2.16.1
1.2.0
3.2.1
1.23.5
1.5.2
C:\Users\obses\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\preprocessing\_encoders.py:808: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.
warnings.warn(
C:\Users\obses\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\src\layers\core\dense.py:86: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Epoch 1/100
2/2 - 1s - 340ms/step - accuracy: 0.4390 - loss: 2.1215 - val_accuracy: 0.6429 - val_loss: 2.0350
Epoch 2/100
2/2 - 0s - 23ms/step - accuracy: 0.3659 - loss: 2.0694 - val_accuracy: 0.7143 - val_loss: 2.0104
Epoch 3/100
2/2 - 0s - 22ms/step - accuracy: 0.3659 - loss: 2.1309 - val_accuracy: 0.8214 - val_loss: 1.9882
Epoch 4/100
2/2 - 0s - 23ms/step - accuracy: 0.4390 - loss: 2.0289 - val_accuracy: 0.8214 - val_loss: 1.9593
Epoch 5/100
2/2 - 0s - 21ms/step - accuracy: 0.6341 - loss: 1.9654 - val_accuracy: 0.8214 - val_loss: 1.9378
Epoch 6/100
2/2 - 0s - 22ms/step - accuracy: 0.6098 - loss: 2.0383 - val_accuracy: 0.8214 - val_loss: 1.9154
Epoch 7/100
2/2 - 0s - 22ms/step - accuracy: 0.6098 - loss: 2.0238 - val_accuracy: 0.8214 - val_loss: 1.8964
Epoch 8/100
2/2 - 0s - 23ms/step - accuracy: 0.6098 - loss: 1.9397 - val_accuracy: 0.8571 - val_loss: 1.8766
Epoch 9/100
2/2 - 0s - 25ms/step - accuracy: 0.5366 - loss: 1.9641 - val_accuracy: 0.8571 - val_loss: 1.8561
Epoch 10/100
2/2 - 0s - 23ms/step - accuracy: 0.5610 - loss: 1.9581 - val_accuracy: 0.8571 - val_loss: 1.8380
Epoch 11/100
2/2 - 0s - 23ms/step - accuracy: 0.7561 - loss: 1.9044 - val_accuracy: 0.8571 - val_loss: 1.8207
Epoch 12/100
2/2 - 0s - 23ms/step - accuracy: 0.5854 - loss: 1.9392 - val_accuracy: 0.8571 - val_loss: 1.8004
Epoch 13/100
2/2 - 0s - 24ms/step - accuracy: 0.7073 - loss: 1.8718 - val_accuracy: 0.8571 - val_loss: 1.7812
Epoch 14/100
2/2 - 0s - 22ms/step - accuracy: 0.7561 - loss: 1.8057 - val_accuracy: 0.8571 - val_loss: 1.7620
Epoch 15/100
2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.8354 - val_accuracy: 0.8571 - val_loss: 1.7440
Epoch 16/100
2/2 - 0s - 24ms/step - accuracy: 0.7073 - loss: 1.8501 - val_accuracy: 0.8571 - val_loss: 1.7269
Epoch 17/100
2/2 - 0s - 24ms/step - accuracy: 0.7561 - loss: 1.7831 - val_accuracy: 0.8571 - val_loss: 1.7084
Epoch 18/100
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.7120 - val_accuracy: 0.8571 - val_loss: 1.6931
Epoch 19/100
2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.8020 - val_accuracy: 0.8571 - val_loss: 1.6786
Epoch 20/100
2/2 - 0s - 24ms/step - accuracy: 0.8049 - loss: 1.7531 - val_accuracy: 0.8571 - val_loss: 1.6630
Epoch 21/100
2/2 - 0s - 21ms/step - accuracy: 0.7561 - loss: 1.7808 - val_accuracy: 0.8571 - val_loss: 1.6489
Epoch 22/100
2/2 - 0s - 21ms/step - accuracy: 0.7561 - loss: 1.7794 - val_accuracy: 0.8571 - val_loss: 1.6352
Epoch 23/100
2/2 - 0s - 23ms/step - accuracy: 0.7805 - loss: 1.6697 - val_accuracy: 0.8571 - val_loss: 1.6184
Epoch 24/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.6814 - val_accuracy: 0.8571 - val_loss: 1.6058
Epoch 25/100
2/2 - 0s - 29ms/step - accuracy: 0.8293 - loss: 1.6687 - val_accuracy: 0.8571 - val_loss: 1.5919
Epoch 26/100
2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.7052 - val_accuracy: 0.8571 - val_loss: 1.5786
Epoch 27/100
2/2 - 0s - 21ms/step - accuracy: 0.8293 - loss: 1.6147 - val_accuracy: 0.8571 - val_loss: 1.5663
Epoch 28/100
2/2 - 0s - 21ms/step - accuracy: 0.7805 - loss: 1.6207 - val_accuracy: 0.8571 - val_loss: 1.5529
Epoch 29/100
2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5964 - val_accuracy: 0.8571 - val_loss: 1.5413
Epoch 30/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.6258 - val_accuracy: 0.8571 - val_loss: 1.5294
Epoch 31/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.5512 - val_accuracy: 0.8571 - val_loss: 1.5175
Epoch 32/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.6674 - val_accuracy: 0.8571 - val_loss: 1.5070
Epoch 33/100
2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5848 - val_accuracy: 0.8571 - val_loss: 1.4977
Epoch 34/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.5467 - val_accuracy: 0.8571 - val_loss: 1.4869
Epoch 35/100
2/2 - 0s - 20ms/step - accuracy: 0.8293 - loss: 1.6244 - val_accuracy: 0.8571 - val_loss: 1.4778
Epoch 36/100
2/2 - 0s - 24ms/step - accuracy: 0.8293 - loss: 1.5275 - val_accuracy: 0.8571 - val_loss: 1.4672
Epoch 37/100
2/2 - 0s - 22ms/step - accuracy: 0.8049 - loss: 1.7105 - val_accuracy: 0.8571 - val_loss: 1.4595
Epoch 38/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.6137 - val_accuracy: 0.8571 - val_loss: 1.4509
Epoch 39/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.5726 - val_accuracy: 0.8571 - val_loss: 1.4425
Epoch 40/100
2/2 - 0s - 21ms/step - accuracy: 0.8293 - loss: 1.5345 - val_accuracy: 0.8571 - val_loss: 1.4347
Epoch 41/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.5689 - val_accuracy: 0.8571 - val_loss: 1.4269
Epoch 42/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4239 - val_accuracy: 0.8571 - val_loss: 1.4175
Epoch 43/100
2/2 - 0s - 22ms/step - accuracy: 0.8293 - loss: 1.5922 - val_accuracy: 0.8571 - val_loss: 1.4099
Epoch 44/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.5006 - val_accuracy: 0.8571 - val_loss: 1.4021
Epoch 45/100
2/2 - 0s - 21ms/step - accuracy: 0.8049 - loss: 1.4858 - val_accuracy: 0.8571 - val_loss: 1.3944
Epoch 46/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4769 - val_accuracy: 0.8571 - val_loss: 1.3874
Epoch 47/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4211 - val_accuracy: 0.8571 - val_loss: 1.3796
Epoch 48/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4060 - val_accuracy: 0.8571 - val_loss: 1.3717
Epoch 49/100
2/2 - 0s - 20ms/step - accuracy: 0.8537 - loss: 1.4741 - val_accuracy: 0.8571 - val_loss: 1.3652
Epoch 50/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4989 - val_accuracy: 0.8571 - val_loss: 1.3588
Epoch 51/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4718 - val_accuracy: 0.8571 - val_loss: 1.3521
Epoch 52/100
2/2 - 0s - 24ms/step - accuracy: 0.8293 - loss: 1.4712 - val_accuracy: 0.8571 - val_loss: 1.3482
Epoch 53/100
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.3657 - val_accuracy: 0.8571 - val_loss: 1.3425
Epoch 54/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3847 - val_accuracy: 0.8571 - val_loss: 1.3366
Epoch 55/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3766 - val_accuracy: 0.8571 - val_loss: 1.3315
Epoch 56/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4275 - val_accuracy: 0.8571 - val_loss: 1.3253
Epoch 57/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4709 - val_accuracy: 0.8571 - val_loss: 1.3209
Epoch 58/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4226 - val_accuracy: 0.8571 - val_loss: 1.3176
Epoch 59/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4491 - val_accuracy: 0.8571 - val_loss: 1.3126
Epoch 60/100
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.4165 - val_accuracy: 0.8571 - val_loss: 1.3073
Epoch 61/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3914 - val_accuracy: 0.8571 - val_loss: 1.3027
Epoch 62/100
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3560 - val_accuracy: 0.8571 - val_loss: 1.2974
Epoch 63/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3432 - val_accuracy: 0.8571 - val_loss: 1.2915
Epoch 64/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3833 - val_accuracy: 0.8571 - val_loss: 1.2866
Epoch 65/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.4477 - val_accuracy: 0.8571 - val_loss: 1.2834
Epoch 66/100
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3054 - val_accuracy: 0.8571 - val_loss: 1.2794
Epoch 67/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2840 - val_accuracy: 0.8571 - val_loss: 1.2742
Epoch 68/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.4320 - val_accuracy: 0.8571 - val_loss: 1.2703
Epoch 69/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.4165 - val_accuracy: 0.8571 - val_loss: 1.2664
Epoch 70/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3210 - val_accuracy: 0.8571 - val_loss: 1.2617
Epoch 71/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3698 - val_accuracy: 0.8571 - val_loss: 1.2580
Epoch 72/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3679 - val_accuracy: 0.8571 - val_loss: 1.2546
Epoch 73/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3647 - val_accuracy: 0.8571 - val_loss: 1.2506
Epoch 74/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3088 - val_accuracy: 0.8571 - val_loss: 1.2465
Epoch 75/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3304 - val_accuracy: 0.8571 - val_loss: 1.2425
Epoch 76/100
2/2 - 0s - 29ms/step - accuracy: 0.8537 - loss: 1.2813 - val_accuracy: 0.8571 - val_loss: 1.2389
Epoch 77/100
2/2 - 0s - 28ms/step - accuracy: 0.8537 - loss: 1.3477 - val_accuracy: 0.8571 - val_loss: 1.2352
Epoch 78/100
2/2 - 0s - 26ms/step - accuracy: 0.8537 - loss: 1.3885 - val_accuracy: 0.8571 - val_loss: 1.2315
Epoch 79/100
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2939 - val_accuracy: 0.8571 - val_loss: 1.2280
Epoch 80/100
2/2 - 0s - 26ms/step - accuracy: 0.8537 - loss: 1.3508 - val_accuracy: 0.8571 - val_loss: 1.2254
Epoch 81/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3219 - val_accuracy: 0.8571 - val_loss: 1.2223
Epoch 82/100
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.3559 - val_accuracy: 0.8571 - val_loss: 1.2190
Epoch 83/100
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3289 - val_accuracy: 0.8571 - val_loss: 1.2159
Epoch 84/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.1656 - val_accuracy: 0.8571 - val_loss: 1.2123
Epoch 85/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2954 - val_accuracy: 0.8571 - val_loss: 1.2088
Epoch 86/100
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2298 - val_accuracy: 0.8571 - val_loss: 1.2058
Epoch 87/100
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3323 - val_accuracy: 0.8571 - val_loss: 1.2037
Epoch 88/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3758 - val_accuracy: 0.8571 - val_loss: 1.2010
Epoch 89/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3587 - val_accuracy: 0.8571 - val_loss: 1.1981
Epoch 90/100
2/2 - 0s - 22ms/step - accuracy: 0.8537 - loss: 1.3240 - val_accuracy: 0.8571 - val_loss: 1.1954
Epoch 91/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.2884 - val_accuracy: 0.8571 - val_loss: 1.1922
Epoch 92/100
2/2 - 0s - 21ms/step - accuracy: 0.8537 - loss: 1.3293 - val_accuracy: 0.8571 - val_loss: 1.1901
Epoch 93/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2706 - val_accuracy: 0.8571 - val_loss: 1.1879
Epoch 94/100
2/2 - 0s - 27ms/step - accuracy: 0.8537 - loss: 1.2715 - val_accuracy: 0.8571 - val_loss: 1.1848
Epoch 95/100
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2628 - val_accuracy: 0.8571 - val_loss: 1.1818
Epoch 96/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.2770 - val_accuracy: 0.8571 - val_loss: 1.1786
Epoch 97/100
2/2 - 0s - 24ms/step - accuracy: 0.8537 - loss: 1.3039 - val_accuracy: 0.8571 - val_loss: 1.1762
Epoch 98/100
2/2 - 0s - 26ms/step - accuracy: 0.8537 - loss: 1.2908 - val_accuracy: 0.8571 - val_loss: 1.1731
Epoch 99/100
2/2 - 0s - 23ms/step - accuracy: 0.8537 - loss: 1.3510 - val_accuracy: 0.8571 - val_loss: 1.1707
Epoch 100/100
2/2 - 0s - 25ms/step - accuracy: 0.8537 - loss: 1.2447 - val_accuracy: 0.8571 - val_loss: 1.1683
1/1 - 0s - 26ms/step - accuracy: 0.8571 - loss: 1.1683
[0.6428571343421936, 0.7142857313156128, 0.8214285969734192, 0.8214285969734192, 0.8214285969734192, 0.8214285969734192, 0.8214285969734192, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064, 0.8571428656578064]
Dokładność testowa: 85.71%
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 16ms/step - accuracy: 0.8571 - loss: 1.1683
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 19ms/step - accuracy: 0.8571 - loss: 1.1683