en-ner-conll-2003/Transformer.ipynb

67 lines
1.3 KiB
Plaintext
Raw Normal View History

2024-06-03 12:24:54 +02:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transformer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import bibliotek"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wczytanie danych"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"train_data = pd.read_csv(\"train/train.tsv\", sep=\"\\t\", header=None, names=[\"y\", \"x\"])\n",
"test_A_data = pd.read_csv(\"test-A/in.tsv\", sep=\"\\t\", header=None, names=[\"x\"])\n",
"dev0_data = pd.read_csv(\"dev-0/in.tsv\", sep=\"\\t\", header=None, names=[\"x\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}