Word2Vec implemetation
This commit is contained in:
parent
0cf206db5c
commit
fe140d27be
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
fasttext_100_3_polish.bin*
|
||||
dev-0/out.tsv
|
||||
test-A/out.tsv
|
||||
test-A/expected.tsv
|
50
README.md
50
README.md
@ -1,25 +1,25 @@
|
||||
|
||||
Sport Texts Classification Challenge - Ball
|
||||
======================
|
||||
|
||||
Guess whether the sport is connected to the ball for a Polish article. Evaluation metrics: Accuracy, Likelihood.
|
||||
|
||||
Classes
|
||||
-------
|
||||
|
||||
* `1` — ball
|
||||
* `0` — no-ball
|
||||
|
||||
Directory structure
|
||||
-------------------
|
||||
|
||||
* `README.md` — this file
|
||||
* `config.txt` — configuration file
|
||||
* `train/` — directory with training data
|
||||
* `train/train.tsv` — sample train set
|
||||
* `dev-0/` — directory with dev (test) data
|
||||
* `dev-0/in.tsv` — input data for the dev set
|
||||
* `dev-0/expected.tsv` — expected (reference) data for the dev set
|
||||
* `test-A` — directory with test data
|
||||
* `test-A/in.tsv` — input data for the test set
|
||||
* `test-A/expected.tsv` — expected (reference) data for the test set
|
||||
|
||||
Sport Texts Classification Challenge - Ball
|
||||
======================
|
||||
|
||||
Guess whether the sport is connected to the ball for a Polish article. Evaluation metrics: Accuracy, Likelihood.
|
||||
|
||||
Classes
|
||||
-------
|
||||
|
||||
* `1` — ball
|
||||
* `0` — no-ball
|
||||
|
||||
Directory structure
|
||||
-------------------
|
||||
|
||||
* `README.md` — this file
|
||||
* `config.txt` — configuration file
|
||||
* `train/` — directory with training data
|
||||
* `train/train.tsv` — sample train set
|
||||
* `dev-0/` — directory with dev (test) data
|
||||
* `dev-0/in.tsv` — input data for the dev set
|
||||
* `dev-0/expected.tsv` — expected (reference) data for the dev set
|
||||
* `test-A` — directory with test data
|
||||
* `test-A/in.tsv` — input data for the test set
|
||||
* `test-A/expected.tsv` — expected (reference) data for the test set
|
||||
|
550
Word2Vec.ipynb
Normal file
550
Word2Vec.ipynb
Normal file
@ -0,0 +1,550 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Word2Vec"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Import bibliotek"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from gensim.models import KeyedVectors\n",
|
||||
"from gensim.utils import simple_preprocess\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"from keras.models import Sequential\n",
|
||||
"from keras.layers import Dense\n",
|
||||
"from sklearn.preprocessing import LabelEncoder"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Wczytanie danych"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Text</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Mindaugas Budzinauskas wierzy w odbudowę formy...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Przyjmujący reprezentacji Polski wrócił do PGE...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>FEN 9: Zapowiedź walki Róża Gumienna vs Katarz...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Aleksander Filipiak: Czuję się dobrze w nowym ...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>Victoria Carl i Aleksiej Czerwotkin mistrzami ...</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Text\n",
|
||||
"0 Mindaugas Budzinauskas wierzy w odbudowę formy...\n",
|
||||
"1 Przyjmujący reprezentacji Polski wrócił do PGE...\n",
|
||||
"2 FEN 9: Zapowiedź walki Róża Gumienna vs Katarz...\n",
|
||||
"3 Aleksander Filipiak: Czuję się dobrze w nowym ...\n",
|
||||
"4 Victoria Carl i Aleksiej Czerwotkin mistrzami ..."
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Text</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>ATP Sztokholm: Juergen Zopp wykorzystał szansę...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Krowicki z reprezentacją kobiet aż do igrzysk ...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>Wielki powrót Łukasza Kubota Odradza się zawsz...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Marcel Hirscher wygrał ostatni slalom gigant m...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>Polki do Czarnogóry z pełnią zaangażowania. Sy...</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Text\n",
|
||||
"0 ATP Sztokholm: Juergen Zopp wykorzystał szansę...\n",
|
||||
"1 Krowicki z reprezentacją kobiet aż do igrzysk ...\n",
|
||||
"2 Wielki powrót Łukasza Kubota Odradza się zawsz...\n",
|
||||
"3 Marcel Hirscher wygrał ostatni slalom gigant m...\n",
|
||||
"4 Polki do Czarnogóry z pełnią zaangażowania. Sy..."
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Text</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Mundial 2018. Były reprezentant Anglii trenere...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Liga Mistrzyń: Podopieczne Kima Rasmussena bli...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>Wyczerpujące treningi biegowe Justyny Kowalczy...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Mundial 2018. Zagraniczne media zareagowały na...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>BCL. Artur Gronek: Musimy grać twardziej. Pope...</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Text\n",
|
||||
"0 Mundial 2018. Były reprezentant Anglii trenere...\n",
|
||||
"1 Liga Mistrzyń: Podopieczne Kima Rasmussena bli...\n",
|
||||
"2 Wyczerpujące treningi biegowe Justyny Kowalczy...\n",
|
||||
"3 Mundial 2018. Zagraniczne media zareagowały na...\n",
|
||||
"4 BCL. Artur Gronek: Musimy grać twardziej. Pope..."
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Label</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Label\n",
|
||||
"0 1\n",
|
||||
"1 1\n",
|
||||
"2 0\n",
|
||||
"3 1\n",
|
||||
"4 0"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Label</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Label\n",
|
||||
"0 1\n",
|
||||
"1 1\n",
|
||||
"2 0\n",
|
||||
"3 1\n",
|
||||
"4 1"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"data_train = pd.read_csv('train/train.tsv', sep=\"\\t\", names=[\"Text\"], usecols=[1])\n",
|
||||
"data_test = pd.read_csv('test-A/in.tsv', sep=\"\\t\", names=[\"Text\"])\n",
|
||||
"data_dev = pd.read_csv('dev-0/in.tsv', sep=\"\\t\", names=[\"Text\"])\n",
|
||||
"\n",
|
||||
"labels_train = pd.read_csv('train/train.tsv', sep='\\t', header=None, names=['Label'], usecols=[0])\n",
|
||||
"labels_dev = pd.read_csv('dev-0/expected.tsv', sep='\\t', header=None, names=['Label'])\n",
|
||||
"\n",
|
||||
"display(data_train.head())\n",
|
||||
"display(data_test.head())\n",
|
||||
"display(data_dev.head())\n",
|
||||
"display(labels_train.head())\n",
|
||||
"display(labels_dev.head())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Załadowanie wektorów Word2Vec"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"W2V_model = KeyedVectors.load('fasttext_100_3_polish.bin')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Funkcj przekształcania tekstu na wektory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def text_to_vector(text, word2vec, vector_size):\n",
|
||||
" words = simple_preprocess(text)\n",
|
||||
" text_vector = np.zeros(vector_size)\n",
|
||||
" word_count = 0\n",
|
||||
" for word in words:\n",
|
||||
" if word in word2vec.wv:\n",
|
||||
" text_vector += word2vec.wv[word]\n",
|
||||
" word_count += 1\n",
|
||||
" if word_count > 0:\n",
|
||||
" text_vector /= word_count\n",
|
||||
" return text_vector"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Dostosowanie formatu danych do modelu"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Zamiana tekstów na wektory\n",
|
||||
"train_vectors = np.array([text_to_vector(text, W2V_model, 100) for text in data_train['Text']])\n",
|
||||
"dev_vectors = np.array([text_to_vector(text, W2V_model, 100) for text in data_dev['Text']])\n",
|
||||
"test_vectors = np.array([text_to_vector(text, W2V_model, 100) for text in data_test['Text']])\n",
|
||||
"\n",
|
||||
"# Zamiana etykiet na liczby\n",
|
||||
"label_encoder = LabelEncoder()\n",
|
||||
"train_labels_enc = label_encoder.fit_transform(labels_train['Label'])\n",
|
||||
"dev_labels_enc = label_encoder.transform(labels_dev['Label'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Stworzenie modelu"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 783us/step - accuracy: 0.9121 - loss: 0.2125 - val_accuracy: 0.9514 - val_loss: 0.1274\n",
|
||||
"Epoch 2/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 752us/step - accuracy: 0.9528 - loss: 0.1238 - val_accuracy: 0.9565 - val_loss: 0.1127\n",
|
||||
"Epoch 3/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 752us/step - accuracy: 0.9578 - loss: 0.1101 - val_accuracy: 0.9529 - val_loss: 0.1167\n",
|
||||
"Epoch 4/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 754us/step - accuracy: 0.9605 - loss: 0.1020 - val_accuracy: 0.9622 - val_loss: 0.1060\n",
|
||||
"Epoch 5/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 746us/step - accuracy: 0.9624 - loss: 0.0951 - val_accuracy: 0.9580 - val_loss: 0.1058\n",
|
||||
"Epoch 6/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 756us/step - accuracy: 0.9632 - loss: 0.0935 - val_accuracy: 0.9631 - val_loss: 0.0924\n",
|
||||
"Epoch 7/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 757us/step - accuracy: 0.9661 - loss: 0.0885 - val_accuracy: 0.9602 - val_loss: 0.1000\n",
|
||||
"Epoch 8/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 754us/step - accuracy: 0.9662 - loss: 0.0869 - val_accuracy: 0.9642 - val_loss: 0.0927\n",
|
||||
"Epoch 9/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 758us/step - accuracy: 0.9667 - loss: 0.0840 - val_accuracy: 0.9617 - val_loss: 0.0921\n",
|
||||
"Epoch 10/10\n",
|
||||
"\u001b[1m3067/3067\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 766us/step - accuracy: 0.9678 - loss: 0.0831 - val_accuracy: 0.9652 - val_loss: 0.0898\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<keras.src.callbacks.history.History at 0x1d117e0b450>"
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Stworzenie modelu\n",
|
||||
"model = Sequential()\n",
|
||||
"model.add(Dense(128, input_dim=100, activation='relu'))\n",
|
||||
"model.add(Dense(64, activation='relu'))\n",
|
||||
"model.add(Dense(1, activation='sigmoid'))\n",
|
||||
"\n",
|
||||
"model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])\n",
|
||||
"\n",
|
||||
"# Trening modelu\n",
|
||||
"model.fit(train_vectors, train_labels_enc, epochs=10, batch_size=32, validation_data=(dev_vectors, dev_labels_enc))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Predykcja i zapis danych wyjścowych"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[1m171/171\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 718us/step\n",
|
||||
"\u001b[1m171/171\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 591us/step\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Predykcje dla danych walidacyjnych\n",
|
||||
"dev_predictions = model.predict(dev_vectors)\n",
|
||||
"dev_predictions = (dev_predictions > 0.5).astype(int)\n",
|
||||
"\n",
|
||||
"# Predykcje dla danych testowych\n",
|
||||
"test_predictions = model.predict(test_vectors)\n",
|
||||
"test_predictions = (test_predictions > 0.5).astype(int)\n",
|
||||
"\n",
|
||||
"# Zapisanie wyników do plików\n",
|
||||
"pd.DataFrame(dev_predictions).to_csv('dev-0/out.tsv', sep='\\t', index=False, header=False)\n",
|
||||
"pd.DataFrame(test_predictions).to_csv('test-A/out.tsv', sep='\\t', index=False, header=False)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
@ -1 +1 @@
|
||||
--metric Likelihood --metric Accuracy --precision 5
|
||||
--metric Likelihood --metric Accuracy --precision 5
|
||||
|
10904
dev-0/expected.tsv
10904
dev-0/expected.tsv
File diff suppressed because it is too large
Load Diff
10904
dev-0/in.tsv
10904
dev-0/in.tsv
File diff suppressed because it is too large
Load Diff
5452
dev-0/out.tsv
5452
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
10894
test-A/in.tsv
10894
test-A/in.tsv
File diff suppressed because it is too large
Load Diff
5447
test-A/out.tsv
Normal file
5447
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
98132
train/train.tsv
Normal file
98132
train/train.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user