Added model.py

This commit is contained in:
zgolebiewska 2024-04-30 10:49:32 +02:00
parent 61212f5e4c
commit 70f8d14fb8
4 changed files with 195 additions and 2 deletions

View File

@ -2,9 +2,13 @@ FROM ubuntu:latest
RUN apt-get update && apt-get install -y python3-pip unzip coreutils
RUN pip install --user kaggle pandas
RUN pip install --user kaggle pandas scikit-learn tensorflow
WORKDIR /app
COPY ./data_processing.sh ./
COPY ./OrangeQualityData.csv ./
COPY ./OrangeQualityData.csv ./
COPY ./orange_quality_model_tf.h5 ./
COPY ./predictions_tf.json ./
CMD ["python3", "data_processing.sh"]

40
model.py Normal file
View File

@ -0,0 +1,40 @@
import tensorflow as tf
import pandas as pd
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
import json
df = pd.read_csv('OrangeQualityData.csv')
encoder = LabelEncoder()
df["Color"] = encoder.fit_transform(df["Color"])
df["Variety"] = encoder.fit_transform(df["Variety"])
df["Blemishes"] = df["Blemishes (Y/N)"].apply(lambda x: 1 if x.startswith("Y") else 0)
df.drop(columns=["Blemishes (Y/N)"], inplace=True)
X = df.drop(columns=["Quality (1-5)"])
y = df["Quality (1-5)"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],)),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(1)
])
model.compile(optimizer='sgd', loss='mse')
history = model.fit(X_train_scaled, y_train, epochs=100, verbose=0, validation_data=(X_test_scaled, y_test))
model.save('orange_quality_model_tf.h5')
predictions = model.predict(X_test_scaled)
with open('predictions_tf.json', 'w') as f:
json.dump(predictions.tolist(), f, indent=4)

BIN
orange_quality_model_tf.h5 Normal file

Binary file not shown.

149
predictions_tf.json Normal file
View File

@ -0,0 +1,149 @@
[
[
4.033654689788818
],
[
4.351343631744385
],
[
1.5783445835113525
],
[
4.1473917961120605
],
[
3.9993104934692383
],
[
3.8747072219848633
],
[
4.48088264465332
],
[
2.086705207824707
],
[
4.511044979095459
],
[
3.5592899322509766
],
[
4.714838027954102
],
[
4.666493892669678
],
[
4.15949010848999
],
[
4.062054634094238
],
[
3.3104782104492188
],
[
3.671990394592285
],
[
4.121957302093506
],
[
5.101129055023193
],
[
3.2231392860412598
],
[
4.860662937164307
],
[
3.1851491928100586
],
[
4.8820481300354
],
[
2.043302059173584
],
[
3.892570972442627
],
[
4.5895609855651855
],
[
2.4837639331817627
],
[
2.157947063446045
],
[
4.463848114013672
],
[
4.560668468475342
],
[
4.00075626373291
],
[
2.392961263656616
],
[
2.701927423477173
],
[
3.338017463684082
],
[
5.018939018249512
],
[
3.04030179977417
],
[
3.2020576000213623
],
[
4.9051432609558105
],
[
4.618875980377197
],
[
3.9825124740600586
],
[
4.486858367919922
],
[
4.929688930511475
],
[
3.033353328704834
],
[
4.897153854370117
],
[
3.149707555770874
],
[
3.7602972984313965
],
[
4.0963287353515625
],
[
3.0543882846832275
],
[
3.698991060256958
],
[
2.9619979858398438
]
]