ium_464913/create-dataset.py

122 lines
3.6 KiB
Python
Raw Normal View History

2024-04-01 13:47:56 +02:00
import os
2024-04-01 13:57:27 +02:00
from kaggle.api.kaggle_api_extended import KaggleApi
2024-04-01 13:47:56 +02:00
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
def download_kaggle_dataset():
2024-04-01 13:57:27 +02:00
kaggle = KaggleApi()
kaggle.authenticate()
kaggle.dataset_download_files("mlg-ulb/creditcardfraud", path="./", unzip=True)
2024-04-01 13:47:56 +02:00
def load_data(name):
df = pd.read_csv(name)
return df
def normalize_data(df):
scaler = StandardScaler()
df["Amount"] = scaler.fit_transform(df["Amount"].values.reshape(-1, 1))
return df
def create_undersample_data(df):
# Determine the number of instances in the minority class
fraud_count = len(df[df.Class == 1])
fraud_indices = np.array(df[df.Class == 1].index)
# Select indices corresponding to majority class instances
normal_indices = df[df.Class == 0].index
# Randomly sample the same number of instances from the majority class
random_normal_indices = np.random.choice(normal_indices, fraud_count, replace=False)
random_normal_indices = np.array(random_normal_indices)
# Combine indices of both classes
undersample_indice = np.concatenate([fraud_indices, random_normal_indices])
# Undersample dataset
undersample_data = df.iloc[undersample_indice, :]
X_undersample = undersample_data.iloc[:, undersample_data.columns != "Class"]
y_undersample = undersample_data.iloc[:, undersample_data.columns == "Class"]
return undersample_data, X_undersample, y_undersample
def split_undersample_data(X_undersample, y_undersample):
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = (
train_test_split(X_undersample, y_undersample, test_size=0.3, random_state=0)
)
return (
X_train_undersample,
X_test_undersample,
y_train_undersample,
y_test_undersample,
)
def save_undersample_data(
undersample_data,
X_train_undersample,
X_test_undersample,
y_train_undersample,
y_test_undersample,
):
undersample_data.to_csv("/data/undersample_data.csv", index=False)
X_train_undersample.to_csv("/data/X_train_undersample.csv", index=False)
X_test_undersample.to_csv("/data/X_test_undersample.csv", index=False)
y_train_undersample.to_csv("/data/y_train_undersample.csv", index=False)
y_test_undersample.to_csv("/data/y_test_undersample.csv", index=False)
def split_whole_data(df):
X = df.iloc[:, df.columns != "Class"]
y = df.iloc[:, df.columns == "Class"]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0
)
return X_train, X_test, y_train, y_test
def save_whole_data(df, X_train, X_test, y_train, y_test):
df.to_csv("/data/creditcard.csv", index=False)
X_train.to_csv("/data/X_train.csv", index=False)
X_test.to_csv("/data/X_test.csv", index=False)
y_train.to_csv("/data/y_train.csv", index=False)
y_test.to_csv("/data/y_test.csv", index=False)
def main():
download_kaggle_dataset()
os.makedirs("data", exist_ok=True)
df = load_data("creditcard.csv")
df = normalize_data(df)
undersample_data, X_undersample, y_undersample = create_undersample_data(df)
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = (
split_undersample_data(X_undersample, y_undersample)
)
save_undersample_data(
undersample_data,
X_train_undersample,
X_test_undersample,
y_train_undersample,
y_test_undersample,
)
X_train, X_test, y_train, y_test = split_whole_data(df)
save_whole_data(X_train, X_test, y_train, y_test)
if __name__ == "__main__":
main()