IUM_05
This commit is contained in:
parent
ffdbe0a365
commit
a6be9a7295
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,4 +1,5 @@
|
||||
creditcardfraud.zip
|
||||
creditcard.csv
|
||||
data
|
||||
model/model.keras
|
||||
model/model.keras
|
||||
stats_data
|
@ -1,9 +1,6 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
@ -18,72 +15,27 @@ def normalize_data(df):
|
||||
return df
|
||||
|
||||
|
||||
def create_undersample_data(df):
|
||||
# Determine the number of instances in the minority class
|
||||
fraud_count = len(df[df.Class == 1])
|
||||
fraud_indices = np.array(df[df.Class == 1].index)
|
||||
|
||||
# Select indices corresponding to majority class instances
|
||||
normal_indices = df[df.Class == 0].index
|
||||
|
||||
# Randomly sample the same number of instances from the majority class
|
||||
random_normal_indices = np.random.choice(normal_indices, fraud_count, replace=False)
|
||||
random_normal_indices = np.array(random_normal_indices)
|
||||
|
||||
# Combine indices of both classes
|
||||
undersample_indice = np.concatenate([fraud_indices, random_normal_indices])
|
||||
|
||||
# Undersample dataset
|
||||
undersample_data = df.iloc[undersample_indice, :]
|
||||
|
||||
X_undersample = undersample_data.iloc[:, undersample_data.columns != "Class"]
|
||||
y_undersample = undersample_data.iloc[:, undersample_data.columns == "Class"]
|
||||
|
||||
return undersample_data, X_undersample, y_undersample
|
||||
|
||||
|
||||
def split_undersample_data(X_undersample, y_undersample):
|
||||
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = (
|
||||
train_test_split(X_undersample, y_undersample, test_size=0.3, random_state=0)
|
||||
)
|
||||
|
||||
return (
|
||||
X_train_undersample,
|
||||
X_test_undersample,
|
||||
y_train_undersample,
|
||||
y_test_undersample,
|
||||
)
|
||||
|
||||
|
||||
def save_undersample_data(
|
||||
undersample_data,
|
||||
X_train_undersample,
|
||||
X_test_undersample,
|
||||
y_train_undersample,
|
||||
y_test_undersample,
|
||||
):
|
||||
undersample_data.to_csv("data/undersample_data.csv", index=False)
|
||||
X_train_undersample.to_csv("data/X_train_undersample.csv", index=False)
|
||||
X_test_undersample.to_csv("data/X_test_undersample.csv", index=False)
|
||||
y_train_undersample.to_csv("data/y_train_undersample.csv", index=False)
|
||||
y_test_undersample.to_csv("data/y_test_undersample.csv", index=False)
|
||||
|
||||
|
||||
def split_whole_data(df):
|
||||
def split_data(df):
|
||||
X = df.iloc[:, df.columns != "Class"]
|
||||
y = df.iloc[:, df.columns == "Class"]
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y, test_size=0.3, random_state=0
|
||||
X, y, test_size=0.2, random_state=0
|
||||
)
|
||||
return X_train, X_test, y_train, y_test
|
||||
X_train, X_val, y_train, y_val = train_test_split(
|
||||
X_train, y_train, test_size=0.25, random_state=0
|
||||
)
|
||||
|
||||
return X_train, X_val, X_test, y_train, y_val, y_test
|
||||
|
||||
|
||||
def save_whole_data(df, X_train, X_test, y_train, y_test):
|
||||
def save_data(df, X_train, X_val, X_test, y_train, y_val, y_test):
|
||||
df.to_csv("data/creditcard.csv", index=False)
|
||||
X_train.to_csv("data/X_train.csv", index=False)
|
||||
X_val.to_csv("data/X_val.csv", index=False)
|
||||
X_test.to_csv("data/X_test.csv", index=False)
|
||||
y_train.to_csv("data/y_train.csv", index=False)
|
||||
y_val.to_csv("data/y_val.csv", index=False)
|
||||
y_test.to_csv("data/y_test.csv", index=False)
|
||||
|
||||
|
||||
@ -94,20 +46,8 @@ def main():
|
||||
df = load_data("creditcard.csv")
|
||||
df = normalize_data(df)
|
||||
|
||||
undersample_data, X_undersample, y_undersample = create_undersample_data(df)
|
||||
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = (
|
||||
split_undersample_data(X_undersample, y_undersample)
|
||||
)
|
||||
save_undersample_data(
|
||||
undersample_data,
|
||||
X_train_undersample,
|
||||
X_test_undersample,
|
||||
y_train_undersample,
|
||||
y_test_undersample,
|
||||
)
|
||||
|
||||
X_train, X_test, y_train, y_test = split_whole_data(df)
|
||||
save_whole_data(df, X_train, X_test, y_train, y_test)
|
||||
X_train, X_val, X_test, y_train, y_val, y_test = split_data(df)
|
||||
save_data(df, X_train, X_val, X_test, y_train, y_val, y_test)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -7,16 +7,12 @@ def write_to_file(file_name):
|
||||
df = pd.read_csv("data/creditcard.csv")
|
||||
pd.set_option("display.max_columns", None)
|
||||
|
||||
undersample_data = pd.read_csv("data/undersample_data.csv")
|
||||
X_test_undersample = pd.read_csv("data/X_test_undersample.csv")
|
||||
y_test_undersample = pd.read_csv("data/y_test_undersample.csv")
|
||||
X_train_undersample = pd.read_csv("data/X_train_undersample.csv")
|
||||
y_train_undersample = pd.read_csv("data/y_train_undersample.csv")
|
||||
|
||||
X_test = pd.read_csv("data/X_test.csv")
|
||||
y_test = pd.read_csv("data/y_test.csv")
|
||||
X_train = pd.read_csv("data/X_train.csv")
|
||||
X_val = pd.read_csv("data/X_val.csv")
|
||||
X_test = pd.read_csv("data/X_test.csv")
|
||||
y_train = pd.read_csv("data/y_train.csv")
|
||||
y_val = pd.read_csv("data/y_val.csv")
|
||||
y_test = pd.read_csv("data/y_test.csv")
|
||||
|
||||
with open("stats_data/" + file_name, "w") as f:
|
||||
sys.stdout = f
|
||||
@ -41,24 +37,7 @@ def write_to_file(file_name):
|
||||
|
||||
f.write("\n\n")
|
||||
|
||||
f.write("Size of undersampled dataset\n")
|
||||
undersample_data.info()
|
||||
|
||||
f.write("\n\n")
|
||||
|
||||
f.write("Summary statistics of the undersampled dataset\n")
|
||||
f.write(str(undersample_data.describe()))
|
||||
|
||||
f.write("\n\n")
|
||||
|
||||
f.write(
|
||||
"Distribution of legitimate and fraudulent transactions in an undersampled dataset\n"
|
||||
)
|
||||
f.write(str(undersample_data["Class"].value_counts()))
|
||||
|
||||
f.write("\n\n")
|
||||
|
||||
f.write("Statistical measures of the training dataset of whole data\n")
|
||||
f.write("Statistical measures of the training dataset\n")
|
||||
pd.concat([X_train, y_train], axis=1).info()
|
||||
f.write("\n")
|
||||
f.write(str(pd.concat([X_train, y_train], axis=1).describe()))
|
||||
@ -67,49 +46,22 @@ def write_to_file(file_name):
|
||||
|
||||
f.write("\n\n")
|
||||
|
||||
f.write("Statistical measures of the test dataset of whole data\n")
|
||||
f.write("Statistical measures of the validation dataset\n")
|
||||
pd.concat([X_val, y_val], axis=1).info()
|
||||
f.write("\n")
|
||||
f.write(str(pd.concat([X_val, y_val], axis=1).describe()))
|
||||
f.write("\n")
|
||||
f.write(str(pd.concat([X_val, y_val], axis=1)["Class"].value_counts()))
|
||||
|
||||
f.write("\n\n")
|
||||
|
||||
f.write("Statistical measures of the test dataset\n")
|
||||
pd.concat([X_test, y_test], axis=1).info()
|
||||
f.write("\n")
|
||||
f.write(str(pd.concat([X_test, y_test], axis=1).describe()))
|
||||
f.write("\n")
|
||||
f.write(str(pd.concat([X_test, y_test], axis=1)["Class"].value_counts()))
|
||||
|
||||
f.write("\n\n")
|
||||
|
||||
f.write("Statistical measures of the training dataset of undersampled data\n")
|
||||
pd.concat([X_train_undersample, y_train_undersample], axis=1).info()
|
||||
f.write("\n")
|
||||
f.write(
|
||||
str(
|
||||
pd.concat([X_train_undersample, y_train_undersample], axis=1).describe()
|
||||
)
|
||||
)
|
||||
f.write("\n")
|
||||
f.write(
|
||||
str(
|
||||
pd.concat([X_train_undersample, y_train_undersample], axis=1)[
|
||||
"Class"
|
||||
].value_counts()
|
||||
)
|
||||
)
|
||||
|
||||
f.write("\n\n")
|
||||
|
||||
f.write("Statistical measures of the test dataset of undersampled data\n")
|
||||
pd.concat([X_test_undersample, y_test_undersample], axis=1).info()
|
||||
f.write("\n")
|
||||
f.write(
|
||||
str(pd.concat([X_test_undersample, y_test_undersample], axis=1).describe())
|
||||
)
|
||||
f.write("\n")
|
||||
f.write(
|
||||
str(
|
||||
pd.concat([X_test_undersample, y_test_undersample], axis=1)[
|
||||
"Class"
|
||||
].value_counts()
|
||||
)
|
||||
)
|
||||
|
||||
sys.stdout = sys.__stdout__
|
||||
|
||||
|
||||
|
@ -10,12 +10,17 @@ import pandas as pd
|
||||
|
||||
def main():
|
||||
X_train = pd.read_csv("data/X_train.csv")
|
||||
X_val = pd.read_csv("data/X_val.csv")
|
||||
y_train = pd.read_csv("data/y_train.csv")
|
||||
y_val = pd.read_csv("data/y_val.csv")
|
||||
|
||||
X_train = X_train.to_numpy()
|
||||
X_val = X_val.to_numpy()
|
||||
y_train = y_train.to_numpy()
|
||||
y_val = y_val.to_numpy()
|
||||
|
||||
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
||||
X_val = X_val.reshape(X_val.shape[0], X_val.shape[1], 1)
|
||||
|
||||
model = Sequential(
|
||||
[
|
||||
@ -41,6 +46,7 @@ def main():
|
||||
model.fit(
|
||||
X_train,
|
||||
y_train,
|
||||
validation_data=(X_val, y_val),
|
||||
epochs=5,
|
||||
verbose=1,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user