IUM_06
This commit is contained in:
parent
c0b07aaac4
commit
f6c7f5981e
8
Jenkinsfile
vendored
8
Jenkinsfile
vendored
@ -2,7 +2,7 @@ pipeline {
|
|||||||
agent {
|
agent {
|
||||||
dockerfile true
|
dockerfile true
|
||||||
}
|
}
|
||||||
|
|
||||||
triggers {
|
triggers {
|
||||||
upstream(upstreamProjects: 'z-s464913-create-dataset', threshold: hudson.model.Result.SUCCESS)
|
upstream(upstreamProjects: 'z-s464913-create-dataset', threshold: hudson.model.Result.SUCCESS)
|
||||||
}
|
}
|
||||||
@ -13,8 +13,8 @@ pipeline {
|
|||||||
description: 'Which build to use for copying artifacts',
|
description: 'Which build to use for copying artifacts',
|
||||||
name: 'BUILD_SELECTOR'
|
name: 'BUILD_SELECTOR'
|
||||||
)
|
)
|
||||||
string(name: 'learning_rate', defaultValue: '0.001', description: 'Learning rate')
|
string(name: 'LEARNING_RATE', defaultValue: '0.001', description: 'Learning rate')
|
||||||
string(name: 'epochs', defaultValue: '5', description: 'Number of epochs')
|
string(name: 'EPOCHS', defaultValue: '5', description: 'Number of epochs')
|
||||||
}
|
}
|
||||||
|
|
||||||
stages {
|
stages {
|
||||||
@ -33,7 +33,7 @@ pipeline {
|
|||||||
stage('Run train_model script') {
|
stage('Run train_model script') {
|
||||||
steps {
|
steps {
|
||||||
sh 'chmod +x train_model.py'
|
sh 'chmod +x train_model.py'
|
||||||
sh 'python3 ./train_model.py'
|
sh 'python3 ./train_model.py ${params.LEARNING_RATE} ${params.EPOCHS}'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -6,6 +6,7 @@ from keras.models import Sequential
|
|||||||
from keras.layers import BatchNormalization, Dropout, Dense, Flatten, Conv1D
|
from keras.layers import BatchNormalization, Dropout, Dense, Flatten, Conv1D
|
||||||
from keras.optimizers import Adam
|
from keras.optimizers import Adam
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
@ -22,6 +23,9 @@ def main():
|
|||||||
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
||||||
X_val = X_val.reshape(X_val.shape[0], X_val.shape[1], 1)
|
X_val = X_val.reshape(X_val.shape[0], X_val.shape[1], 1)
|
||||||
|
|
||||||
|
learning_rate = float(sys.argv[1])
|
||||||
|
epochs = int(sys.argv[2])
|
||||||
|
|
||||||
model = Sequential(
|
model = Sequential(
|
||||||
[
|
[
|
||||||
Conv1D(32, 2, activation="relu", input_shape=X_train[0].shape),
|
Conv1D(32, 2, activation="relu", input_shape=X_train[0].shape),
|
||||||
@ -38,7 +42,7 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
model.compile(
|
model.compile(
|
||||||
optimizer=Adam(learning_rate=1e-3),
|
optimizer=Adam(learning_rate=learning_rate),
|
||||||
loss="binary_crossentropy",
|
loss="binary_crossentropy",
|
||||||
metrics=["accuracy"],
|
metrics=["accuracy"],
|
||||||
)
|
)
|
||||||
@ -47,7 +51,7 @@ def main():
|
|||||||
X_train,
|
X_train,
|
||||||
y_train,
|
y_train,
|
||||||
validation_data=(X_val, y_val),
|
validation_data=(X_val, y_val),
|
||||||
epochs=5,
|
epochs=epochs,
|
||||||
verbose=1,
|
verbose=1,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user