125 lines
3.7 KiB
Python
125 lines
3.7 KiB
Python
import os
|
|
import sys
|
|
from kaggle.api.kaggle_api_extended import KaggleApi
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
def download_kaggle_dataset():
|
|
os.environ["KAGGLE_USERNAME"] = "vskyper"
|
|
os.environ["KAGGLE_KEY"] = sys.argv[1]
|
|
kaggle = KaggleApi()
|
|
kaggle.authenticate()
|
|
kaggle.dataset_download_files("mlg-ulb/creditcardfraud", path="./", unzip=True)
|
|
|
|
|
|
def load_data(name):
|
|
df = pd.read_csv(name)
|
|
return df
|
|
|
|
|
|
def normalize_data(df):
|
|
scaler = StandardScaler()
|
|
df["Amount"] = scaler.fit_transform(df["Amount"].values.reshape(-1, 1))
|
|
return df
|
|
|
|
|
|
def create_undersample_data(df):
|
|
# Determine the number of instances in the minority class
|
|
fraud_count = len(df[df.Class == 1])
|
|
fraud_indices = np.array(df[df.Class == 1].index)
|
|
|
|
# Select indices corresponding to majority class instances
|
|
normal_indices = df[df.Class == 0].index
|
|
|
|
# Randomly sample the same number of instances from the majority class
|
|
random_normal_indices = np.random.choice(normal_indices, fraud_count, replace=False)
|
|
random_normal_indices = np.array(random_normal_indices)
|
|
|
|
# Combine indices of both classes
|
|
undersample_indice = np.concatenate([fraud_indices, random_normal_indices])
|
|
|
|
# Undersample dataset
|
|
undersample_data = df.iloc[undersample_indice, :]
|
|
|
|
X_undersample = undersample_data.iloc[:, undersample_data.columns != "Class"]
|
|
y_undersample = undersample_data.iloc[:, undersample_data.columns == "Class"]
|
|
|
|
return undersample_data, X_undersample, y_undersample
|
|
|
|
|
|
def split_undersample_data(X_undersample, y_undersample):
|
|
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = (
|
|
train_test_split(X_undersample, y_undersample, test_size=0.3, random_state=0)
|
|
)
|
|
|
|
return (
|
|
X_train_undersample,
|
|
X_test_undersample,
|
|
y_train_undersample,
|
|
y_test_undersample,
|
|
)
|
|
|
|
|
|
def save_undersample_data(
|
|
undersample_data,
|
|
X_train_undersample,
|
|
X_test_undersample,
|
|
y_train_undersample,
|
|
y_test_undersample,
|
|
):
|
|
undersample_data.to_csv("data/undersample_data.csv", index=False)
|
|
X_train_undersample.to_csv("data/X_train_undersample.csv", index=False)
|
|
X_test_undersample.to_csv("data/X_test_undersample.csv", index=False)
|
|
y_train_undersample.to_csv("data/y_train_undersample.csv", index=False)
|
|
y_test_undersample.to_csv("data/y_test_undersample.csv", index=False)
|
|
|
|
|
|
def split_whole_data(df):
|
|
X = df.iloc[:, df.columns != "Class"]
|
|
y = df.iloc[:, df.columns == "Class"]
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.3, random_state=0
|
|
)
|
|
return X_train, X_test, y_train, y_test
|
|
|
|
|
|
def save_whole_data(df, X_train, X_test, y_train, y_test):
|
|
df.to_csv("data/creditcard.csv", index=False)
|
|
X_train.to_csv("data/X_train.csv", index=False)
|
|
X_test.to_csv("data/X_test.csv", index=False)
|
|
y_train.to_csv("data/y_train.csv", index=False)
|
|
y_test.to_csv("data/y_test.csv", index=False)
|
|
|
|
|
|
def main():
|
|
# download_kaggle_dataset()
|
|
os.makedirs("data", exist_ok=True)
|
|
|
|
df = load_data("creditcard.csv")
|
|
df = normalize_data(df)
|
|
|
|
undersample_data, X_undersample, y_undersample = create_undersample_data(df)
|
|
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = (
|
|
split_undersample_data(X_undersample, y_undersample)
|
|
)
|
|
save_undersample_data(
|
|
undersample_data,
|
|
X_train_undersample,
|
|
X_test_undersample,
|
|
y_train_undersample,
|
|
y_test_undersample,
|
|
)
|
|
|
|
X_train, X_test, y_train, y_test = split_whole_data(df)
|
|
save_whole_data(df, X_train, X_test, y_train, y_test)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|