model and prediction scripts
This commit is contained in:
parent
3ca7e62805
commit
e8a48f51f3
@ -1,6 +0,0 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
@ -1,4 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10" project-jdk-type="Python SDK" />
|
||||
</project>
|
@ -1,6 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
@ -1,76 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="AutoImportSettings">
|
||||
<option name="autoReloadType" value="SELECTIVE" />
|
||||
</component>
|
||||
<component name="ChangeListManager">
|
||||
<list default="true" id="40d6174e-f930-434f-92f0-26bfa57af58c" name="Changes" comment="">
|
||||
<change beforePath="$PROJECT_DIR$/IUM_2.ipynb" beforeDir="false" afterPath="$PROJECT_DIR$/IUM_2.ipynb" afterDir="false" />
|
||||
</list>
|
||||
<option name="SHOW_DIALOG" value="false" />
|
||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
||||
<option name="LAST_RESOLUTION" value="IGNORE" />
|
||||
</component>
|
||||
<component name="Git.Settings">
|
||||
<option name="RECENT_BRANCH_BY_REPOSITORY">
|
||||
<map>
|
||||
<entry key="$PROJECT_DIR$" value="ium_2" />
|
||||
</map>
|
||||
</option>
|
||||
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
|
||||
</component>
|
||||
<component name="MarkdownSettingsMigration">
|
||||
<option name="stateVersion" value="1" />
|
||||
</component>
|
||||
<component name="ProjectId" id="2dpEjKsY3xaMmDCHDmrd7pCeSw4" />
|
||||
<component name="ProjectViewState">
|
||||
<option name="hideEmptyMiddlePackages" value="true" />
|
||||
<option name="showLibraryContents" value="true" />
|
||||
</component>
|
||||
<component name="PropertiesComponent">{
|
||||
"keyToString": {
|
||||
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
||||
"RunOnceActivity.ShowReadmeOnStart": "true",
|
||||
"WebServerToolWindowFactoryState": "false",
|
||||
"last_opened_file_path": "/home/students/s464914/PycharmProjects/ium_464914",
|
||||
"node.js.detected.package.eslint": "true",
|
||||
"node.js.detected.package.tslint": "true",
|
||||
"node.js.selected.package.eslint": "(autodetect)",
|
||||
"node.js.selected.package.tslint": "(autodetect)",
|
||||
"vue.rearranger.settings.migration": "true"
|
||||
}
|
||||
}</component>
|
||||
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
||||
<component name="TaskManager">
|
||||
<task active="true" id="Default" summary="Default task">
|
||||
<changelist id="40d6174e-f930-434f-92f0-26bfa57af58c" name="Changes" comment="" />
|
||||
<created>1710696754593</created>
|
||||
<option name="number" value="Default" />
|
||||
<option name="presentableId" value="Default" />
|
||||
<updated>1710696754593</updated>
|
||||
<workItem from="1710696756015" duration="548000" />
|
||||
<workItem from="1710940251374" duration="3584000" />
|
||||
<workItem from="1711050477406" duration="616000" />
|
||||
<workItem from="1711457152275" duration="7994000" />
|
||||
<workItem from="1711472959743" duration="2963000" />
|
||||
<workItem from="1713023286972" duration="213000" />
|
||||
<workItem from="1713024301113" duration="305000" />
|
||||
</task>
|
||||
<servers />
|
||||
</component>
|
||||
<component name="TypeScriptGeneratedFilesManager">
|
||||
<option name="version" value="3" />
|
||||
</component>
|
||||
<component name="Vcs.Log.Tabs.Properties">
|
||||
<option name="TAB_STATES">
|
||||
<map>
|
||||
<entry key="MAIN">
|
||||
<value>
|
||||
<State />
|
||||
</value>
|
||||
</entry>
|
||||
</map>
|
||||
</option>
|
||||
</component>
|
||||
</project>
|
111
model.py
Normal file
111
model.py
Normal file
@ -0,0 +1,111 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
device = (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, input_features=54, hidden_layer1=25, hidden_layer2=30, output_features=8):
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(input_features,output_features)
|
||||
self.bn1 = nn.BatchNorm1d(hidden_layer1) # Add batch normalization
|
||||
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
|
||||
self.bn2 = nn.BatchNorm1d(hidden_layer2) # Add batch normalization
|
||||
self.out = nn.Linear(hidden_layer2, output_features)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x)) # Apply batch normalization after first linear layer
|
||||
#x = F.relu(self.bn2(self.fc2(x))) # Apply batch normalization after second linear layer
|
||||
#x = self.out(x)
|
||||
return x
|
||||
|
||||
def main():
|
||||
forest_train = pd.read_csv('forest_train.csv')
|
||||
forest_val = pd.read_csv('forest_val.csv')
|
||||
|
||||
print(forest_train.head())
|
||||
|
||||
|
||||
X_train = forest_train.drop(columns=['Cover_Type']).values
|
||||
y_train = forest_train['Cover_Type'].values
|
||||
|
||||
X_val = forest_val.drop(columns=['Cover_Type']).values
|
||||
y_val = forest_val['Cover_Type'].values
|
||||
|
||||
|
||||
# Initialize model, loss function, and optimizer
|
||||
model = Model().to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||
|
||||
# Convert to PyTorch tensors
|
||||
X_train = torch.tensor(X_train, dtype=torch.float32).to(device)
|
||||
y_train = torch.tensor(y_train, dtype=torch.long).to(device)
|
||||
X_val = torch.tensor(X_val, dtype=torch.float32).to(device)
|
||||
y_val = torch.tensor(y_val, dtype=torch.long).to(device)
|
||||
|
||||
# Create DataLoader
|
||||
train_loader = DataLoader(list(zip(X_train, y_train)), batch_size=64, shuffle=True)
|
||||
val_loader = DataLoader(list(zip(X_val, y_val)), batch_size=64)
|
||||
|
||||
# Training loop
|
||||
epochs = 10
|
||||
for epoch in range(epochs):
|
||||
model.train() # Set model to training mode
|
||||
running_loss = 0.0
|
||||
for inputs, labels in train_loader:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item() * inputs.size(0)
|
||||
|
||||
# Calculate training loss
|
||||
epoch_loss = running_loss / len(train_loader.dataset)
|
||||
|
||||
# Validation
|
||||
model.eval() # Set model to evaluation mode
|
||||
val_running_loss = 0.0
|
||||
correct = 0
|
||||
total = 0
|
||||
with torch.no_grad():
|
||||
for inputs, labels in val_loader:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
|
||||
outputs = model(inputs)
|
||||
val_loss = criterion(outputs, labels)
|
||||
val_running_loss += val_loss.item() * inputs.size(0)
|
||||
|
||||
_, predicted = torch.max(outputs, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
|
||||
# Calculate validation loss and accuracy
|
||||
val_epoch_loss = val_running_loss / len(val_loader.dataset)
|
||||
val_accuracy = correct / total
|
||||
|
||||
print(f"Epoch {epoch+1}/{epochs}, "
|
||||
f"Train Loss: {epoch_loss:.4f}, "
|
||||
f"Val Loss: {val_epoch_loss:.4f}, "
|
||||
f"Val Accuracy: {val_accuracy:.4f}")
|
||||
|
||||
|
||||
torch.save(model.state_dict(), 'model.pth')
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
69
prediction.py
Normal file
69
prediction.py
Normal file
@ -0,0 +1,69 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import torch.nn.functional as F
|
||||
|
||||
device = (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, input_features=54, hidden_layer1=25, hidden_layer2=30, output_features=8):
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(input_features,output_features)
|
||||
self.bn1 = nn.BatchNorm1d(hidden_layer1) # Add batch normalization
|
||||
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
|
||||
self.bn2 = nn.BatchNorm1d(hidden_layer2) # Add batch normalization
|
||||
self.out = nn.Linear(hidden_layer2, output_features)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
return x
|
||||
|
||||
def load_model(model, model_path):
|
||||
model.load_state_dict(torch.load(model_path))
|
||||
model.eval()
|
||||
|
||||
def predict(model, input_data):
|
||||
# Convert input data to PyTorch tensor
|
||||
|
||||
# Perform forward pass
|
||||
with torch.no_grad():
|
||||
output = model(input_data)
|
||||
|
||||
_, predicted_class = torch.max(output, 0)
|
||||
|
||||
return predicted_class.item() # Return the predicted class label
|
||||
|
||||
|
||||
def main():
|
||||
forest_test = pd.read_csv('forest_test.csv')
|
||||
|
||||
X_test = forest_test.drop(columns=['Cover_Type']).values
|
||||
y_test = forest_test['Cover_Type'].values
|
||||
|
||||
X_test = torch.tensor(X_test, dtype=torch.float32).to(device)
|
||||
|
||||
model = Model().to(device)
|
||||
model_path = 'model.pth' # Path to your saved model file
|
||||
load_model(model, model_path)
|
||||
|
||||
predictions = []
|
||||
for input_data in X_test:
|
||||
predicted_class = predict(model, input_data)
|
||||
predictions.append(predicted_class)
|
||||
|
||||
with open(r'predictions.txt', 'w') as fp:
|
||||
for item in predictions:
|
||||
# write each item on a new line
|
||||
fp.write("%s\n" % item)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user