add parameter
This commit is contained in:
parent
ac93029123
commit
f883cd5e17
5
Jenkinsfile
vendored
5
Jenkinsfile
vendored
@ -1,11 +1,13 @@
|
|||||||
pipeline {
|
pipeline {
|
||||||
agent any
|
agent any
|
||||||
|
}
|
||||||
parameters {
|
parameters {
|
||||||
buildSelector (
|
buildSelector (
|
||||||
defaultSelector: lastSuccessful(),
|
defaultSelector: lastSuccessful(),
|
||||||
description: 'Build for copying artifacts',
|
description: 'Build for copying artifacts',
|
||||||
name: 'BUILD_SELECTOR'
|
name: 'BUILD_SELECTOR'
|
||||||
)
|
)
|
||||||
|
string(name: 'EPOCHS', defaultValue: '10', description: 'epochs')
|
||||||
}
|
}
|
||||||
stages {
|
stages {
|
||||||
stage('Git Checkout') {
|
stage('Git Checkout') {
|
||||||
@ -23,11 +25,10 @@ pipeline {
|
|||||||
script {
|
script {
|
||||||
def customImage = docker.build("custom-image")
|
def customImage = docker.build("custom-image")
|
||||||
customImage.inside {
|
customImage.inside {
|
||||||
sh 'python3 ./model.py'
|
sh 'python3 ./model.py ${params.EPOCHS}'
|
||||||
archiveArtifacts artifacts: 'model.pth, predictions.txt', onlyIfSuccessful: true
|
archiveArtifacts artifacts: 'model.pth, predictions.txt', onlyIfSuccessful: true
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
3
model.py
3
model.py
@ -6,6 +6,7 @@ import pandas as pd
|
|||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn.preprocessing import LabelEncoder
|
from sklearn.preprocessing import LabelEncoder
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
device = (
|
device = (
|
||||||
@ -59,7 +60,7 @@ def main():
|
|||||||
val_loader = DataLoader(list(zip(X_val, y_val)), batch_size=64)
|
val_loader = DataLoader(list(zip(X_val, y_val)), batch_size=64)
|
||||||
|
|
||||||
# Training loop
|
# Training loop
|
||||||
epochs = 10
|
epochs = os.getenv("EPOCHS")
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
model.train() # Set model to training mode
|
model.train() # Set model to training mode
|
||||||
running_loss = 0.0
|
running_loss = 0.0
|
||||||
|
Loading…
Reference in New Issue
Block a user