Compare commits
2 Commits
f78b47f176
...
56eb2b45da
Author | SHA1 | Date | |
---|---|---|---|
|
56eb2b45da | ||
|
793b7ca37b |
57
evaluate.py
57
evaluate.py
@ -28,6 +28,8 @@ false_negatives = 0
|
|||||||
|
|
||||||
acts_recognized = defaultdict(int)
|
acts_recognized = defaultdict(int)
|
||||||
acts_not_recognized = defaultdict(int)
|
acts_not_recognized = defaultdict(int)
|
||||||
|
false_negatives = 0
|
||||||
|
false_positives = 0
|
||||||
|
|
||||||
for df in data_files:
|
for df in data_files:
|
||||||
if len(df.columns) == 3:
|
if len(df.columns) == 3:
|
||||||
@ -40,48 +42,33 @@ for df in data_files:
|
|||||||
user_speeches = user_speech_rows["message"]
|
user_speeches = user_speech_rows["message"]
|
||||||
entries_count = len(user_speeches)
|
entries_count = len(user_speeches)
|
||||||
|
|
||||||
|
found_rules = user_speeches.apply(lambda x: grammar.find_matching_rules(decode_prompt(x)))
|
||||||
parsed = user_speeches.apply(
|
parsed = user_speeches.apply(lambda x: bool(grammar.find_matching_rules(decode_prompt(x))))
|
||||||
lambda x: bool(grammar.find_matching_rules(decode_prompt(x))))
|
|
||||||
true_count = parsed.sum()
|
true_count = parsed.sum()
|
||||||
false_count = len(parsed) - true_count
|
false_count = len(parsed) - true_count
|
||||||
recognized += true_count
|
recognized += true_count
|
||||||
unrecognized += false_count
|
unrecognized += false_count
|
||||||
|
|
||||||
for line, correct in zip(df.iterrows(), parsed):
|
for line, rules in zip(df.iterrows(), found_rules):
|
||||||
acts_recognized[line[1]['act'].split('(')[0]] += int(correct)
|
act = line[1]['act'].split('(')[0]
|
||||||
acts_not_recognized[line[1]['act'].split('(')[0]] += int(not(correct))
|
if len(rules) > 0:
|
||||||
|
recognized_act = rules[0].name
|
||||||
|
if recognized_act in act:
|
||||||
print(f"Recognized user utterances: {recognized}")
|
true_positives += 1
|
||||||
print(f"Unrecognized user utterances: {unrecognized}")
|
else:
|
||||||
print(f"Accuracy: {recognized/(recognized+unrecognized)}")
|
false_positives += 1
|
||||||
|
acts_not_recognized[act] += 1
|
||||||
|
else:
|
||||||
precision_per_class = {}
|
false_negatives += 1
|
||||||
recall_per_class = {}
|
acts_not_recognized[act] += 1
|
||||||
|
|
||||||
for act in acts_recognized.keys():
|
|
||||||
true_positives = acts_recognized[act]
|
|
||||||
false_negatives = acts_not_recognized[act]
|
|
||||||
false_positives = recognized - true_positives
|
|
||||||
|
|
||||||
|
accuracy = recognized / (recognized + unrecognized)
|
||||||
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) != 0 else 0
|
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) != 0 else 0
|
||||||
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) != 0 else 0
|
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) != 0 else 0
|
||||||
|
|
||||||
precision_per_class[act] = precision
|
print(f"Recognized user utterances: {recognized}")
|
||||||
recall_per_class[act] = recall
|
print(f"Unrecognized user utterances: {unrecognized}")
|
||||||
|
print(f"Accuracy: {accuracy}")
|
||||||
|
print(f"Precision: {precision}")
|
||||||
|
print(f"Recall: {recall}")
|
||||||
|
|
||||||
average_precision = sum(precision_per_class.values()) / len(precision_per_class)
|
|
||||||
average_recall = sum(recall_per_class.values()) / len(recall_per_class)
|
|
||||||
|
|
||||||
print("\nPrecision per class:")
|
|
||||||
for act, precision in precision_per_class.items():
|
|
||||||
print(f"{act}: {precision}")
|
|
||||||
|
|
||||||
print("\nRecall per class:")
|
|
||||||
for act, recall in recall_per_class.items():
|
|
||||||
print(f"{act}: {recall}")
|
|
||||||
|
|
||||||
print(f"\nAverage Precision: {average_precision}")
|
|
||||||
print(f"Average Recall: {average_recall}")
|
|
||||||
|
Loading…
Reference in New Issue
Block a user