diff --git a/EDA_Billionaires .ipynb b/EDA_Billionaires .ipynb
new file mode 100644
index 0000000..dc506ef
--- /dev/null
+++ b/EDA_Billionaires .ipynb
@@ -0,0 +1,732 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "c3968b76-b939-4c1c-9b84-29e51f8ae69f",
+ "metadata": {},
+ "source": [
+ "# Statystyki miliarderów\n",
+ "**Zbiór danych zawiera statystyki dotyczące miliarderów na świecie, zawarte są również ich dane osobowe, branże którymi się zajmują oraz firmy.**\n",
+ "\n",
+ "[Źródło](https://www.kaggle.com/datasets/nelgiriyewithana/billionaires-statistics-dataset)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "cb8f7a05-40a5-46cf-8900-88da58e8690f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np # linear algebra\n",
+ "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "from matplotlib.ticker import FormatStrFormatter, StrMethodFormatter\n",
+ "plt.style.use('ggplot')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "5a5c0cd6-6606-4983-b945-eeed8b5afe24",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('data.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "4b91bc35-5308-49fc-954e-dc278d133c36",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rank | \n",
+ " finalWorth | \n",
+ " category | \n",
+ " personName | \n",
+ " age | \n",
+ " country | \n",
+ " city | \n",
+ " source | \n",
+ " industries | \n",
+ " countryOfCitizenship | \n",
+ " ... | \n",
+ " cpi_change_country | \n",
+ " gdp_country | \n",
+ " gross_tertiary_education_enrollment | \n",
+ " gross_primary_education_enrollment_country | \n",
+ " life_expectancy_country | \n",
+ " tax_revenue_country_country | \n",
+ " total_tax_rate_country | \n",
+ " population_country | \n",
+ " latitude_country | \n",
+ " longitude_country | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 211000 | \n",
+ " Fashion & Retail | \n",
+ " Bernard Arnault & family | \n",
+ " 74.0 | \n",
+ " France | \n",
+ " Paris | \n",
+ " LVMH | \n",
+ " Fashion & Retail | \n",
+ " France | \n",
+ " ... | \n",
+ " 1.1 | \n",
+ " $2,715,518,274,227 | \n",
+ " 65.6 | \n",
+ " 102.5 | \n",
+ " 82.5 | \n",
+ " 24.2 | \n",
+ " 60.7 | \n",
+ " 6.705989e+07 | \n",
+ " 46.227638 | \n",
+ " 2.213749 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 180000 | \n",
+ " Automotive | \n",
+ " Elon Musk | \n",
+ " 51.0 | \n",
+ " United States | \n",
+ " Austin | \n",
+ " Tesla, SpaceX | \n",
+ " Automotive | \n",
+ " United States | \n",
+ " ... | \n",
+ " 7.5 | \n",
+ " $21,427,700,000,000 | \n",
+ " 88.2 | \n",
+ " 101.8 | \n",
+ " 78.5 | \n",
+ " 9.6 | \n",
+ " 36.6 | \n",
+ " 3.282395e+08 | \n",
+ " 37.090240 | \n",
+ " -95.712891 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 114000 | \n",
+ " Technology | \n",
+ " Jeff Bezos | \n",
+ " 59.0 | \n",
+ " United States | \n",
+ " Medina | \n",
+ " Amazon | \n",
+ " Technology | \n",
+ " United States | \n",
+ " ... | \n",
+ " 7.5 | \n",
+ " $21,427,700,000,000 | \n",
+ " 88.2 | \n",
+ " 101.8 | \n",
+ " 78.5 | \n",
+ " 9.6 | \n",
+ " 36.6 | \n",
+ " 3.282395e+08 | \n",
+ " 37.090240 | \n",
+ " -95.712891 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 107000 | \n",
+ " Technology | \n",
+ " Larry Ellison | \n",
+ " 78.0 | \n",
+ " United States | \n",
+ " Lanai | \n",
+ " Oracle | \n",
+ " Technology | \n",
+ " United States | \n",
+ " ... | \n",
+ " 7.5 | \n",
+ " $21,427,700,000,000 | \n",
+ " 88.2 | \n",
+ " 101.8 | \n",
+ " 78.5 | \n",
+ " 9.6 | \n",
+ " 36.6 | \n",
+ " 3.282395e+08 | \n",
+ " 37.090240 | \n",
+ " -95.712891 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 106000 | \n",
+ " Finance & Investments | \n",
+ " Warren Buffett | \n",
+ " 92.0 | \n",
+ " United States | \n",
+ " Omaha | \n",
+ " Berkshire Hathaway | \n",
+ " Finance & Investments | \n",
+ " United States | \n",
+ " ... | \n",
+ " 7.5 | \n",
+ " $21,427,700,000,000 | \n",
+ " 88.2 | \n",
+ " 101.8 | \n",
+ " 78.5 | \n",
+ " 9.6 | \n",
+ " 36.6 | \n",
+ " 3.282395e+08 | \n",
+ " 37.090240 | \n",
+ " -95.712891 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 2635 | \n",
+ " 2540 | \n",
+ " 1000 | \n",
+ " Healthcare | \n",
+ " Yu Rong | \n",
+ " 51.0 | \n",
+ " China | \n",
+ " Shanghai | \n",
+ " Health clinics | \n",
+ " Healthcare | \n",
+ " China | \n",
+ " ... | \n",
+ " 2.9 | \n",
+ " $19,910,000,000,000 | \n",
+ " 50.6 | \n",
+ " 100.2 | \n",
+ " 77.0 | \n",
+ " 9.4 | \n",
+ " 59.2 | \n",
+ " 1.397715e+09 | \n",
+ " 35.861660 | \n",
+ " 104.195397 | \n",
+ "
\n",
+ " \n",
+ " 2636 | \n",
+ " 2540 | \n",
+ " 1000 | \n",
+ " Food & Beverage | \n",
+ " Richard Yuengling, Jr. | \n",
+ " 80.0 | \n",
+ " United States | \n",
+ " Pottsville | \n",
+ " Beer | \n",
+ " Food & Beverage | \n",
+ " United States | \n",
+ " ... | \n",
+ " 7.5 | \n",
+ " $21,427,700,000,000 | \n",
+ " 88.2 | \n",
+ " 101.8 | \n",
+ " 78.5 | \n",
+ " 9.6 | \n",
+ " 36.6 | \n",
+ " 3.282395e+08 | \n",
+ " 37.090240 | \n",
+ " -95.712891 | \n",
+ "
\n",
+ " \n",
+ " 2637 | \n",
+ " 2540 | \n",
+ " 1000 | \n",
+ " Manufacturing | \n",
+ " Zhang Gongyun | \n",
+ " 60.0 | \n",
+ " China | \n",
+ " Gaomi | \n",
+ " Tyre manufacturing machinery | \n",
+ " Manufacturing | \n",
+ " China | \n",
+ " ... | \n",
+ " 2.9 | \n",
+ " $19,910,000,000,000 | \n",
+ " 50.6 | \n",
+ " 100.2 | \n",
+ " 77.0 | \n",
+ " 9.4 | \n",
+ " 59.2 | \n",
+ " 1.397715e+09 | \n",
+ " 35.861660 | \n",
+ " 104.195397 | \n",
+ "
\n",
+ " \n",
+ " 2638 | \n",
+ " 2540 | \n",
+ " 1000 | \n",
+ " Real Estate | \n",
+ " Zhang Guiping & family | \n",
+ " 71.0 | \n",
+ " China | \n",
+ " Nanjing | \n",
+ " Real estate | \n",
+ " Real Estate | \n",
+ " China | \n",
+ " ... | \n",
+ " 2.9 | \n",
+ " $19,910,000,000,000 | \n",
+ " 50.6 | \n",
+ " 100.2 | \n",
+ " 77.0 | \n",
+ " 9.4 | \n",
+ " 59.2 | \n",
+ " 1.397715e+09 | \n",
+ " 35.861660 | \n",
+ " 104.195397 | \n",
+ "
\n",
+ " \n",
+ " 2639 | \n",
+ " 2540 | \n",
+ " 1000 | \n",
+ " Diversified | \n",
+ " Inigo Zobel | \n",
+ " 66.0 | \n",
+ " Philippines | \n",
+ " Makati | \n",
+ " Diversified | \n",
+ " Diversified | \n",
+ " Philippines | \n",
+ " ... | \n",
+ " 2.5 | \n",
+ " $376,795,508,680 | \n",
+ " 35.5 | \n",
+ " 107.5 | \n",
+ " 71.1 | \n",
+ " 14.0 | \n",
+ " 43.1 | \n",
+ " 1.081166e+08 | \n",
+ " 12.879721 | \n",
+ " 121.774017 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2640 rows × 35 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rank finalWorth category personName age \\\n",
+ "0 1 211000 Fashion & Retail Bernard Arnault & family 74.0 \n",
+ "1 2 180000 Automotive Elon Musk 51.0 \n",
+ "2 3 114000 Technology Jeff Bezos 59.0 \n",
+ "3 4 107000 Technology Larry Ellison 78.0 \n",
+ "4 5 106000 Finance & Investments Warren Buffett 92.0 \n",
+ "... ... ... ... ... ... \n",
+ "2635 2540 1000 Healthcare Yu Rong 51.0 \n",
+ "2636 2540 1000 Food & Beverage Richard Yuengling, Jr. 80.0 \n",
+ "2637 2540 1000 Manufacturing Zhang Gongyun 60.0 \n",
+ "2638 2540 1000 Real Estate Zhang Guiping & family 71.0 \n",
+ "2639 2540 1000 Diversified Inigo Zobel 66.0 \n",
+ "\n",
+ " country city source \\\n",
+ "0 France Paris LVMH \n",
+ "1 United States Austin Tesla, SpaceX \n",
+ "2 United States Medina Amazon \n",
+ "3 United States Lanai Oracle \n",
+ "4 United States Omaha Berkshire Hathaway \n",
+ "... ... ... ... \n",
+ "2635 China Shanghai Health clinics \n",
+ "2636 United States Pottsville Beer \n",
+ "2637 China Gaomi Tyre manufacturing machinery \n",
+ "2638 China Nanjing Real estate \n",
+ "2639 Philippines Makati Diversified \n",
+ "\n",
+ " industries countryOfCitizenship ... cpi_change_country \\\n",
+ "0 Fashion & Retail France ... 1.1 \n",
+ "1 Automotive United States ... 7.5 \n",
+ "2 Technology United States ... 7.5 \n",
+ "3 Technology United States ... 7.5 \n",
+ "4 Finance & Investments United States ... 7.5 \n",
+ "... ... ... ... ... \n",
+ "2635 Healthcare China ... 2.9 \n",
+ "2636 Food & Beverage United States ... 7.5 \n",
+ "2637 Manufacturing China ... 2.9 \n",
+ "2638 Real Estate China ... 2.9 \n",
+ "2639 Diversified Philippines ... 2.5 \n",
+ "\n",
+ " gdp_country gross_tertiary_education_enrollment \\\n",
+ "0 $2,715,518,274,227 65.6 \n",
+ "1 $21,427,700,000,000 88.2 \n",
+ "2 $21,427,700,000,000 88.2 \n",
+ "3 $21,427,700,000,000 88.2 \n",
+ "4 $21,427,700,000,000 88.2 \n",
+ "... ... ... \n",
+ "2635 $19,910,000,000,000 50.6 \n",
+ "2636 $21,427,700,000,000 88.2 \n",
+ "2637 $19,910,000,000,000 50.6 \n",
+ "2638 $19,910,000,000,000 50.6 \n",
+ "2639 $376,795,508,680 35.5 \n",
+ "\n",
+ " gross_primary_education_enrollment_country life_expectancy_country \\\n",
+ "0 102.5 82.5 \n",
+ "1 101.8 78.5 \n",
+ "2 101.8 78.5 \n",
+ "3 101.8 78.5 \n",
+ "4 101.8 78.5 \n",
+ "... ... ... \n",
+ "2635 100.2 77.0 \n",
+ "2636 101.8 78.5 \n",
+ "2637 100.2 77.0 \n",
+ "2638 100.2 77.0 \n",
+ "2639 107.5 71.1 \n",
+ "\n",
+ " tax_revenue_country_country total_tax_rate_country population_country \\\n",
+ "0 24.2 60.7 6.705989e+07 \n",
+ "1 9.6 36.6 3.282395e+08 \n",
+ "2 9.6 36.6 3.282395e+08 \n",
+ "3 9.6 36.6 3.282395e+08 \n",
+ "4 9.6 36.6 3.282395e+08 \n",
+ "... ... ... ... \n",
+ "2635 9.4 59.2 1.397715e+09 \n",
+ "2636 9.6 36.6 3.282395e+08 \n",
+ "2637 9.4 59.2 1.397715e+09 \n",
+ "2638 9.4 59.2 1.397715e+09 \n",
+ "2639 14.0 43.1 1.081166e+08 \n",
+ "\n",
+ " latitude_country longitude_country \n",
+ "0 46.227638 2.213749 \n",
+ "1 37.090240 -95.712891 \n",
+ "2 37.090240 -95.712891 \n",
+ "3 37.090240 -95.712891 \n",
+ "4 37.090240 -95.712891 \n",
+ "... ... ... \n",
+ "2635 35.861660 104.195397 \n",
+ "2636 37.090240 -95.712891 \n",
+ "2637 35.861660 104.195397 \n",
+ "2638 35.861660 104.195397 \n",
+ "2639 12.879721 121.774017 \n",
+ "\n",
+ "[2640 rows x 35 columns]"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "165adea3-3cf5-44e7-9555-2dbebd7b824c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "rank 0\n",
+ "finalWorth 0\n",
+ "category 0\n",
+ "personName 0\n",
+ "age 65\n",
+ "country 38\n",
+ "city 72\n",
+ "source 0\n",
+ "industries 0\n",
+ "countryOfCitizenship 0\n",
+ "organization 2315\n",
+ "selfMade 0\n",
+ "status 0\n",
+ "gender 0\n",
+ "birthDate 76\n",
+ "lastName 0\n",
+ "firstName 3\n",
+ "title 2301\n",
+ "date 0\n",
+ "state 1887\n",
+ "residenceStateRegion 1893\n",
+ "birthYear 76\n",
+ "birthMonth 76\n",
+ "birthDay 76\n",
+ "cpi_country 184\n",
+ "cpi_change_country 184\n",
+ "gdp_country 164\n",
+ "gross_tertiary_education_enrollment 182\n",
+ "gross_primary_education_enrollment_country 181\n",
+ "life_expectancy_country 182\n",
+ "tax_revenue_country_country 183\n",
+ "total_tax_rate_country 182\n",
+ "population_country 164\n",
+ "latitude_country 164\n",
+ "longitude_country 164\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "id": "299bfc4a-e7c2-4afe-a8d1-9f61076c08b2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG0CAYAAADJpthQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA410lEQVR4nO3de1TVdb7/8deGDXITN4qISIKkpCkCNWlHPeE4pa5iVmOWltl4Mm1Ka5zxNDOWdtHEW2NTHfXoKI4yzUnNlT/TNM0aG03L0vEGFhKSeGGAZKOACBv27w8X33F/veF2C2x5PtZqyff7/ezPfm/eSC+/V4vT6XQKAAAABp/GLgAAAKCpISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADCxNnYB3qykpEQOh8Nj87Vt21ZFRUUemw83Dr3yLvTLe9Ar7+GNvbJarQoLC6vf2Btcy03N4XCourraI3NZLBZjTp7+0rTRK+9Cv7wHvfIezaFXHGIDAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJg0qUeNrFmzRrt27dLx48fl7++v+Ph4jRw5UlFRUcaY1157TVlZWS6vu/fee/X0008by8XFxVq8eLEyMzMVEBCglJQUjRgxQr6+vsaYzMxMZWRkKD8/X23atNHQoUPVv3//G/4ZAQBA09ekAlJWVpYGDRqkW2+9VTU1NXrvvfc0ffp0vfnmmwoICDDG/exnP9Pw4cONZX9/f+Pr2tpazZw5UzabTdOnT1dJSYnmzZsnX19fjRgxQpJUWFioWbNm6b777tPzzz+vgwcPauHChbLZbEpKSmqwzwsAAJqmJhWQJk+e7LI8fvx4jRkzRrm5ubr99tuN9S1atJDNZrvkHPv27dOxY8f08ssvy2azKTY2VsOHD9ff/vY3DRs2TFarVZs3b1ZERIR++ctfSpKio6P17bff6qOPPrpkQKqurnZ5KK3FYlFgYKDxtSfUzeOp+XDj0CvvQr+8B73yHs2hV00qIJlVVFRIkkJCQlzWb9u2Tdu2bZPNZtOdd96poUOHqkWLFpKk7OxsdezY0SVAJSUlacmSJcrPz1enTp10+PBhJSQkuMyZmJioZcuWXbKONWvWaPXq1cZyp06dNHv2bLVt29YDn9JVZGSkx+fEjUGvvAv98h70ynvczL1qsgGptrZWy5Yt02233aaOHTsa6/v166fw8HC1bt1aP/zwg/72t7/pxIkTeuGFFyRJdrv9or1LrVq1MrbV/Vm37sIxZ8+eVVVVlcshO0kaMmSIUlNTjeW6xFxUVCSHw+GRz2uxWBQZGamCggI5nU6PzIkbg155F/rlPeiV9/DWXlmt1nrv3GiyASk9PV35+fmaNm2ay/p7773X+Lpjx44KCwvTtGnTVFBQcMOSrJ+fn/z8/C65zdM/GE6nU9ZzlVJVpUfnlST5B6jav4Xn522mnE6nV/1iaO7ol/egV97jZu5VkwxI6enp2rNnj6ZOnao2bdpccWznzp0lyQhINptNOTk5LmNKS0slydizZLPZjHUXjgkMDLxo71GjqKpU5cI5Hp824JnfSwQkAACuqkndB8npdCo9PV27du3SK6+8ooiIiKu+Ji8vT5IUFhYmSYqPj9fRo0ddAtD+/fsVGBio6OhoSVKXLl104MABl3n279+v+Ph4D30SAADgzZpUQEpPT9e2bds0YcIEBQYGym63y263q6qqStL5vUSrV69Wbm6uCgsL9c0332j+/Pnq1q2bYmJiJJ0/2To6Olrz5s1TXl6e9u7dqxUrVmjQoEHGYbKBAweqsLBQ7777ro4fP65NmzZp586deuCBBxrtswMAgKajSR1i27x5s6TzN4O80Lhx49S/f39ZrVYdOHBAGzZs0Llz59SmTRv17t1bDz30kDHWx8dHkyZN0pIlSzRlyhS1aNFCKSkpLvdNioiI0KRJk7R8+XJt2LBBbdq00TPPPMM9kAAAgCTJ4rxZz65qAEVFRS73R7oeFotF7du318mTJ2U9Y79h5yBVh7S6+kBc0YW94q9P00e/vAe98h7e2is/P796X8XWpA6xAQAANAUEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACAibWxC7jQmjVrtGvXLh0/flz+/v6Kj4/XyJEjFRUVZYypqqpSRkaGduzYoerqaiUmJmrMmDGy2WzGmOLiYi1evFiZmZkKCAhQSkqKRowYIV9fX2NMZmamMjIylJ+frzZt2mjo0KHq379/A35aAADQVDWpPUhZWVkaNGiQ0tLSNGXKFNXU1Gj69OmqrKw0xixfvly7d+/WxIkTNXXqVJWUlGju3LnG9traWs2cOVMOh0PTp0/X+PHjtXXrVq1cudIYU1hYqFmzZql79+6aM2eOHnjgAS1cuFB79+5tyI8LAACaqCYVkCZPnqz+/fvrlltuUWxsrMaPH6/i4mLl5uZKkioqKvTZZ59p1KhR6tGjh+Li4jRu3Dh99913ys7OliTt27dPx44d0/PPP6/Y2FglJydr+PDh2rRpkxwOhyRp8+bNioiI0C9/+UtFR0dr8ODBuvvuu/XRRx812mcHAABNR5M6xGZWUVEhSQoJCZEk5ebmqqamRgkJCcaYDh06KDw8XNnZ2YqPj1d2drY6duzocsgtKSlJS5YsUX5+vjp16qTDhw+7zCFJiYmJWrZs2SXrqK6uVnV1tbFssVgUGBhofO0JdfMYf3pk1su/D9xn7hWaNvrlPeiV92gOvWqyAam2tlbLli3Tbbfdpo4dO0qS7Ha7rFargoODXca2atVKdrvdGHNhOKrbXret7s+6dReOOXv2rKqqquTv7++ybc2aNVq9erWx3KlTJ82ePVtt27a93o95kcjISNnPlslpqsET/Pz81LZ9e4/P21xFRkY2dgm4BvTLe9Ar73Ez96rJBqT09HTl5+dr2rRpjV2KhgwZotTUVGO5LjEXFRUZh+2ul8ViUWRkpAoKCuRbXa2qqiqPzOvyHtXVOnnypMfnbW4u7JXT6WzscnAV9Mt70Cvv4a29slqt9d650SQDUnp6uvbs2aOpU6eqTZs2xnqbzSaHw6Hy8nKXvUilpaXGXiObzaacnByX+UpLS41tdX/WrbtwTGBg4EV7j6Tze178/PwuWaunfzDq5rtRP27e9IPc1DmdTr6fXoR+eQ965T1u5l41qZO0nU6n0tPTtWvXLr3yyiuKiIhw2R4XFydfX18dOHDAWHfixAkVFxcrPj5ekhQfH6+jR4+6BKD9+/crMDBQ0dHRkqQuXbq4zFE3pm4OAADQvDWpgJSenq5t27ZpwoQJCgwMlN1ul91uNw43BQUFacCAAcrIyNDBgweVm5urBQsWKD4+3gg3iYmJio6O1rx585SXl6e9e/dqxYoVGjRokLEXaODAgSosLNS7776r48ePa9OmTdq5c6ceeOCBRvvsAACg6WhSh9g2b94sSXrttddc1o8bN864ieOoUaNksVg0d+5cORwO40aRdXx8fDRp0iQtWbJEU6ZMUYsWLZSSkqLhw4cbYyIiIjRp0iQtX75cGzZsUJs2bfTMM88oKSnpRn9EAADgBSzOm/XgYQMoKipyufz/elgsFrVv314nT56U9YxdlQvneGTeCwU883tVh7S6+kBc0YW94q9P00e/vAe98h7e2is/P796n6TdpA6xAQAANAUEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMDEer0TlJaWqqioSJLUtm1btWrV6rqLAgAAaExuB6QDBw7ob3/7m44cOeKyvlOnThoxYoR69ux53cUBAAA0BrcC0q5du/Tmm2+qVatWevDBB9W+fXtJ0okTJ/SPf/xDM2fO1G9/+1v16tXLo8UCAAA0BLcC0ooVK3TLLbdo2rRpCgwMdNk2ZMgQvfLKK1qxYgUBCQAAeCW3TtL+17/+pZ/+9KcXhSNJCgoK0oABA1RYWHjdxQEAADQGtwJShw4dVFpaetntdrvdOOwGAADgbdwKSCNHjtQnn3yir7/++qJtu3bt0pYtW/TEE09cd3EAAACNoV7nIM2ePfuidaGhofrjH/+o1q1bKzIyUpJUUFCgU6dOKSoqSh9//DFXsgEAAK9Ur4B09OjRS64PDw+XJON8Ix8fH4WHh6uqquqyrwEAAGjq6hWQ5s+ff6PrAAAAaDJ41AgAAIDJdT1qJCsrS3v27HF51Mgdd9yh22+/3SPFAQAANIarBqSqqir5+/u7rHM4HHrrrbeMq9iCgoIkSRUVFVq3bp169eqlCRMmyGq97ke9AQAANLirJpj169fLZrNpwIABxrr3339fX3/9tX7+858rNTVVNptN0vkH165bt07r1q3T6tWr9eijj96wwgEAAG6Uq56DFB8fr4yMDK1cudJYt337dqWkpGjkyJFGOJKkVq1aaeTIkbrnnnu0bdu2G1IwAADAjXbVgNSjRw/NmjVLe/bs0ccffyzp/J2yO3fufNnXdOnSRXa73WNFAgAANKR6nSQUGRmptLQ0495GrVu3VlZWlgYOHHjJ8VlZWWrduvU1F5OVlaUPP/xQR44cUUlJiV544QWXB97Onz9fn3/+uctrEhMTNXnyZGO5rKxMS5cu1e7du2WxWNS7d289+eSTCggIMMb88MMPSk9P1/fff6/Q0FANHjxYDz744DXXCwAAbk71PovaarUqLi5OkpSSkqL3339fQUFBSk1NdbmT9kcffaSdO3dq2LBh11zMuXPnFBsbqwEDBuiPf/zjJcckJSVp3LhxLnVd6J133lFJSYmmTJmimpoaLViwQIsWLdKECRMknT+RfPr06UpISNDYsWN19OhR/e///q+Cg4N17733XnPNAADg5uPWZWYPPfSQ/vWvf+nTTz/Vp59+Kh+f80fqamtrJZ0PUEOGDLnmeZOTk5WcnHzFMVar1eW8pwsdO3ZMe/fu1cyZM3XrrbdKkkaPHq2ZM2fqiSeeUOvWrbV9+3Y5HA6NGzdOVqtVt9xyi/Ly8rR+/XoCEgAAkORmQPLx8dH48eOVmpqqf/7zny73QUpOTlZMTIxHi7xQVlaWxowZo+DgYPXo0UOPPvqoWrZsKUnKzs5WcHCwEY4kKSEhQRaLRTk5OerVq5eys7PVrVs3lz1PiYmJWrt2rcrKyhQSEnLRe1ZXV6u6utpYtlgsCgwMNL72hLp5jD89Muvl3wfuM/cKTRv98h70yns0h15d142KYmJibmgYMktKSlLv3r0VERGhgoICvffee5oxY4bS0tLk4+Mju92u0NBQl9f4+voqJCTEOGncbrcrIiLCZUzdHim73X7JgLRmzRqtXr3aWO7UqZNmz56ttm3bevYD6vz5XvazZXKa7j3lCX5+fmrbvr3H522u6g4twzvQL+9Br7zHzdwrtwLS2bNnVV5ebjysVpJOnTqlTz75RNXV1br77ruveJWbu/r27Wt83bFjR8XExOj5559XZmamEhISPP5+dYYMGaLU1FRjuS4xFxUVyeFweOQ9LBaLIiMjVVBQIN/qalVVVXlkXpf3qK7WyZMnPT5vc3Nhr5xOZ2OXg6ugX96DXnkPb+2V1Wqt984NtwLSokWLVFRUpLS0NEnnT3yePHmyTp06JYvFoo0bN+qll15S9+7d3Zm+3tq1a6eWLVuqoKBACQkJstlsOn36tMuYmpoalZWVGXuJbDbbRbcgqFu+3LlNfn5+8vPzu+Q2T/9g1M13o37cvOkHualzOp18P70I/fIe9Mp73My9cuthtd99953uuOMOY3nbtm0qKSnR66+/rr/85S/q2LGjPvjgA48VeTk//vijysrKFBYWJun8TS3Ly8uVm5trjDl48KCcTqexRys+Pl6HDh1y2fOzf/9+RUVFXfLwGgAAaH7cCkinT592uc/RN998o65duyo+Pl6BgYFKSUlRXl7eNc9bWVmpvLw847WFhYXKy8tTcXGxKisr9de//lXZ2dkqLCzUgQMHNGfOHEVGRioxMVGSFB0draSkJC1atEg5OTn69ttvtXTpUvXp08eot1+/frJarVq4cKHy8/O1Y8cObdy40eUQGgAAaN7cOsQWHBxsHJaqqqrSt99+63JZv4+Pj1vn0Hz//feaOnWqsZyRkSHp/G0D6u5Z9Pnnn6u8vFytW7dWz549NXz4cJfDX7/+9a+Vnp6uadOmGTeKHD16tLE9KChIU6ZMUXp6uiZNmqSWLVtq6NChXOIPAAAMbgWk+Ph4bd68WR06dNDevXtVVVWlu+66y9h+8uRJt+6k3b17d61ateqy2y+8Y/blhISEGDeFvJyYmBhNmzbtmusDAADNg1uH2EaOHClfX1/NnTtXn376qVJTU3XLLbdIOn+zyC+//FLdunXzaKEAAAANxa09SJGRkXrrrbd07NgxBQUFudxX6Ny5cxo9enSD3h8JAADAk9y+UaTValVsbOxF6wMDA10OtwEAAHgbtwNSbW2t/vGPf2jPnj0qLi6WJIWHh+vOO+/Uf/7nfxrPZwMAAPA2bgWkiooKpaWlKScnR4GBgWrXrp0k6cCBA/rqq6+0efNmTZ48WUFBQR4tFgAAoCG4FZDee+895ebmavTo0frZz35mPPjV4XDos88+01/+8hetWLHC5fJ6AAAAb+HWcbBdu3Zp4MCBGjRokBGOpPPnJQ0cOFD33XefvvrqK48VCQAA0JDcCkhlZWWKioq67PYOHTqorKzM7aIAAAAak1sBKTIyUt98881lt3/zzTfGeUkAAADexq2ANHDgQO3fv18zZ87Uvn37VFhYqMLCQu3du1czZ87U/v37NXjwYE/XCgAA0CDcOkl70KBBKi0t1dq1a7V3717XCa1WPfzwwxo4cKAn6gMAAGhwbt8HadiwYRo8eLAOHDigoqIiSVLbtm2VkJCg0NBQjxUIAADQ0NwOSJIUGhqqvn37eqoWAACAJoHbXQMAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwMTty/x/+OEHbdy4UUeOHFFFRYWcTqfLdovFov/5n/+57gIBAAAamlt7kDIzM/XSSy9pz549CgsLU2Fhodq1a6ewsDAVFRUpICBA3bp183StAAAADcKtPUirVq1SRESE0tLS5HA4NHbsWA0ZMkQ9evTQ4cOHNWPGDD3++OOerhUAAKBBuLUHKTc3VwMGDFBQUJB8fM5PUVtbK0nq0qWL7rvvPq1cudJzVQIAADQgtwKSr6+vAgMDJUnBwcHy9fVVaWmpsT0iIkLHjh3zTIUAAAANzK2AFBkZqZMnT0o6fzJ2hw4dtGvXLmP7nj17ZLPZPFIgAABAQ3MrICUnJ+uLL75QTU2NJOmBBx7Qrl279Otf/1q//vWvtXv3bt17770eLRQAAKChuHWS9tChQ3X//fcb5x/1799fPj4++uqrr+Tj46OHHnpI/fv392SdAAAADcatgGS1WtWyZUuXdffcc4/uuecejxQFAADQmNy+UaR0/sq13NxcFRYWSjp/cnZcXJyxZwkAAMAbuR2Qtm7dqv/7v/9zuXpNkkJDQ/XYY49pwIAB110cAABAY3ArIH3yySdasmSJYmNj9cgjj6h9+/aSpBMnTmjLli1atGiRHA6HBg4c6NFiAQAAGoJbAWnt2rXq2rWrXn75ZVmt/56iR48eGjBggKZNm6YPP/yQgAQAALySWycL2e12/cd//IdLOKpjtVrVp0+fiw69AQAAeAu3AlKnTp2MG0VeysmTJxUbG+tuTQAAAI3KrYD05JNPaufOndqwYYOqqqqM9VVVVVq/fr127typ0aNHe6xIAACAhlSvc5BeeOGFi9b5+Pho+fLlevfddxUWFiZJKikpUU1NjcLCwrRgwQK98cYbnq0WAACgAdQrIIWEhMhisbisa9mypXH1Wp2IiAjPVQYAANBI6hWQXnvttRtcBgAAQNPBLa8BAABM3ApIw4cP19NPP62srKxLbt+2bZuGDx9+XYUBAAA0Frf3IFVXV+v111/Xhg0bPFkPAABAo3P7WWyjRo1STk6Oli9fru+//16/+tWv5O/v78naAAAAGoXbAclqtWrMmDHq0qWLlixZomPHjul3v/udwsPDPVkfAABAg7vuk7RTUlL0+uuvq6KiQn/4wx904MABT9QFAADQaDxyFVtsbKxmzZqlzp07a8aMGfrss888MS0AAECj8Nhl/sHBwZo0aZKGDBly2avbAAAAvIFb5yDNmzdPoaGhF623WCwaNmyY7r77bpWVlV13cQAAAI3BrYDUtm3bK27v2LGjW8UAAAA0BW4dYluxYoV+97vfXXb773//e73//vtuFwUAANCY3ApIX375pZKTky+7PTk5WTt27HC7KAAAgMbkVkAqLi5Wu3btLrs9IiJCxcXFbhcFAADQmNwKSAEBASoqKrrs9sLCQvn5+bldFAAAQGNyKyDdfvvt2rJli06dOnXRtuLiYm3ZskXdu3e/7uIAAAAag1tXsT366KN68cUXNXHiRA0YMEDR0dGSpPz8fP3973+X0+nU8OHDPVooAABAQ3ErIEVFRWnatGlaunSpPvroI5dt3bp105NPPmmEJgAAAG/j9sNqY2JiNHXqVJ0+fVqFhYWSzp+cfakbSAIAAHgTtwNSndDQUEIRAAC4qdQrIH3++eeSpHvuuUcWi8VYvpqUlBT3KwMAAGgk9QpICxYskCT17dtXVqvVWL4aAhIAAPBG9QpI8+bNOz/YanVZBgAAuBnVKyCZH057tYfVVlZWqqKi4pqLycrK0ocffqgjR46opKREL7zwgnr16mVsdzqdWrVqlT799FOVl5era9euGjNmjNq3b2+MKSsr09KlS7V7925ZLBb17t1bTz75pAICAowxP/zwg9LT0/X9998rNDRUgwcP1oMPPnjN9QIAgJuTWzeKvJoNGzbo2WefvebXnTt3TrGxsXrqqacuuX3t2rXauHGjxo4dqxkzZqhFixZKS0tTVVWVMeadd95Rfn6+pkyZokmTJunQoUNatGiRsb2iokLTp09XeHi4Zs2apZEjR+r999/Xli1brv2DAgCAm9J1X8XmScnJyZd9CK7T6dSGDRv00EMP6a677pIkPffccxo7dqy+/vpr9e3bV8eOHdPevXs1c+ZM3XrrrZKk0aNHa+bMmXriiSfUunVrbd++XQ6HQ+PGjZPVatUtt9yivLw8rV+/Xvfee+8l37u6ulrV1dXGssViUWBgoPG1J9TNY/zpkVkv/z5wn7lXaNrol/egV96jOfSqSQWkKyksLJTdblfPnj2NdUFBQercubOys7PVt29fZWdnKzg42AhHkpSQkCCLxaKcnBz16tVL2dnZ6tatm3E+lSQlJiZq7dq1KisrU0hIyEXvvWbNGq1evdpY7tSpk2bPnn3VQ43uiIyMlP1smZz+/h6f28/PT20vOByJ6xMZGdnYJeAa0C/vQa+8x83cK68JSHa7XZLUqlUrl/WtWrUyttnt9ovuyeTr66uQkBCXMRERES5jbDabse1SAWnIkCFKTU01lusSc1FRkRwOh7sfyYXFYlFkZKQKCgrkW13tctjQUyzV1Tp58qTH521uLuyV0+ls7HJwFfTLe9Ar7+GtvbJarfXeueE1Aakx+fn5yc/P75LbPP2DUTffjfpx86Yf5KbO6XTy/fQi9Mt70CvvcTP3qt4BKTc3t96Tnjp1yq1irqRuL09paanCwsKM9aWlpYqNjTXGnD592uV1NTU1KisrM15vs9mMvUl16pbrxgAAgOat3gHpxRdfvJF1XFVERIRsNpsOHDhgBKKKigrl5ORo4MCBkqT4+HiVl5crNzdXcXFxkqSDBw/K6XSqc+fOxpj33ntPDofDOA9p//79ioqKuuThNQAA0PzUOyC5c9n+taqsrFRBQYGxXFhYqLy8PIWEhCg8PFz333+/PvjgA7Vv314RERFasWKFwsLCjKvaoqOjlZSUpEWLFmns2LFyOBxaunSp+vTpo9atW0uS+vXrp/fff18LFy7Ugw8+qPz8fG3cuFGjRo264Z8PAAB4B4uzCR08zMzM1NSpUy9an5KSovHjxxs3ityyZYsqKirUtWtXPfXUU4qKijLGlpWVKT093eVGkaNHj77sjSJbtmypwYMH6xe/+MU111tUVORy+f/1sFgsat++vU6ePCnrGbsqF87xyLwXCnjm96oOaXX1gbiiC3vVhP764DLol/egV97DW3vl5+dX75O0m1RA8jYEpObJW38xNFf0y3vQK+/hrb26loB0Q+6kDQAA4M0ISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAE2tjF3AtVq1apdWrV7usi4qK0ltvvSVJqqqqUkZGhnbs2KHq6molJiZqzJgxstlsxvji4mItXrxYmZmZCggIUEpKikaMGCFfX98G/CQAAKAp86qAJEm33HKLXn75ZWPZx+ffO8GWL1+uPXv2aOLEiQoKClJ6errmzp2r119/XZJUW1urmTNnymazafr06SopKdG8efPk6+urESNGNPhnAQAATZPXHWLz8fGRzWYz/gsNDZUkVVRU6LPPPtOoUaPUo0cPxcXFady4cfruu++UnZ0tSdq3b5+OHTum559/XrGxsUpOTtbw4cO1adMmORyOxvxYAACgCfG6PUgFBQX61a9+JT8/P8XHx2vEiBEKDw9Xbm6uampqlJCQYIzt0KGDwsPDlZ2drfj4eGVnZ6tjx44uh9ySkpK0ZMkS5efnq1OnTpd8z+rqalVXVxvLFotFgYGBxteeUDeP8adHZr38+8B95l6haaNf3oNeeY/m0CuvCkhdunTRuHHjFBUVpZKSEq1evVqvvPKK5s6dK7vdLqvVquDgYJfXtGrVSna7XZJkt9tdwlHd9rptl7NmzRqXc586deqk2bNnq23bth75XBeKjIyU/WyZnP7+Hp/bz89Pbdu39/i8zVVkZGRjl4BrQL+8B73yHjdzr7wqICUnJxtfx8TEGIFp586d8r8BgaLOkCFDlJqaaizXJeaioiKPHZqzWCyKjIxUQUGBfKurVVVV5ZF5Xd6julonT570+LzNzYW9cjqdjV0OroJ+eQ965T28tVdWq7XeOze8KiCZBQcHKyoqSgUFBerZs6ccDofKy8td9iKVlpYae41sNptycnJc5igtLTW2XY6fn5/8/Pwuuc3TPxh1892oHzdv+kFu6pxOJ99PL0K/vAe98h43c6+87iTtC1VWVqqgoEA2m01xcXHy9fXVgQMHjO0nTpxQcXGx4uPjJUnx8fE6evSoEYokaf/+/QoMDFR0dHSD1w8AAJomr9qDlJGRoZ/85CcKDw9XSUmJVq1aJR8fH/Xr109BQUEaMGCAMjIyFBISoqCgIC1dulTx8fFGQEpMTFR0dLTmzZunxx9/XHa7XStWrNCgQYMuu4cIAAA0P14VkE6dOqW3335bZ86cUWhoqLp27aq0tDTjUv9Ro0bJYrFo7ty5cjgcxo0i6/j4+GjSpElasmSJpkyZohYtWiglJUXDhw9vrI8EAACaIK8KSL/5zW+uuN3f319jxoxxCUVmbdu21YsvvujhygAAwM3Eq89BAgAAuBEISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwMTa2AWg4Vh8rfIrK70xk/sHqNq/xY2ZGwCABkZAak6qz6nyz3NvyNQBz/xeIiABAG4SHGIDAAAwISABAACYEJAAAABMCEgAAAAmnKQNj+AKOQDAzaRZB6SPP/5Y69atk91uV0xMjEaPHq3OnTs3dlneiSvkAAA3kWZ7iG3Hjh3KyMjQww8/rNmzZysmJkZpaWkqLb1Be0EAAIDXaLZ7kNavX6+f/exn+ulPfypJGjt2rPbs2aO///3v+sUvftG4xcHFDTt8x6E7AMBlNMuA5HA4lJub6xKEfHx8lJCQoOzs7IvGV1dXq7q62li2WCwKDAyU1eq5b5/FYpEk+fn5ybdFgPw7xHhs7jo3at4bPrePRVX/b6XH5/UfNlrW6nNuvfbM8XwFOByXH2C1Slfa7q4bNe+NnPtG1uzvL4fV/4pDLvy75XQ66zWt1VElVVVdd3mXVI+amyt3eoXG4a29upb/bzfLgHT69GnV1tbKZrO5rLfZbDpx4sRF49esWaPVq1cby3379tWECRMUFhbm8drCw8Ol8HDpv1/z+NySbty83jw3moXw8PDGLgH1RK+8x83cq2Z7DtK1GDJkiJYtW2b8N3bsWJc9Sp5w9uxZ/eEPf9DZs2c9Oi88j155F/rlPeiV92gOvWqWe5BCQ0Pl4+Mju93ust5ut1+0V0k6vwvRz8/vhtbkdDp15MgRr9pV2VzRK+9Cv7wHvfIezaFXzXIPktVqVVxcnA4ePGisq62t1cGDBxUfH9+IlQEAgKagWe5BkqTU1FTNnz9fcXFx6ty5szZs2KBz586pf//+jV0aAABoZM02IPXp00enT5/WqlWrZLfbFRsbq5deeumSh9gagp+fnx5++OEbfigP149eeRf65T3olfdoDr2yOG/mA4gAAABuaJbnIAEAAFwJAQkAAMCEgAQAAGBCQAIAADBptlexNSUff/yx1q1bJ7vdrpiYGI0ePVqdO3du7LJuGqtWrXJ5VIwkRUVF6a233pIkVVVVKSMjQzt27FB1dbUSExM1ZswYlysai4uLtXjxYmVmZiogIEApKSkaMWKEfH19jTGZmZnKyMhQfn6+2rRpo6FDh1502wh6fbGsrCx9+OGHOnLkiEpKSvTCCy+oV69exnan06lVq1bp008/VXl5ubp27aoxY8aoffv2xpiysjItXbpUu3fvlsViUe/evfXkk08qICDAGPPDDz8oPT1d33//vUJDQzV48GA9+OCDLrXs3LlTK1euVFFRkSIjI/X444/rjjvuuKZabmZX69X8+fP1+eefu7wmMTFRkydPNpbpVcNYs2aNdu3apePHj8vf31/x8fEaOXKkoqKijDFN6XdffWppaOxBamQ7duxQRkaGHn74Yc2ePVsxMTFKS0tTaekNeHp9M3bLLbfoz3/+s/HftGnTjG3Lly/X7t27NXHiRE2dOlUlJSWaO3eusb22tlYzZ86Uw+HQ9OnTNX78eG3dulUrV/77AbqFhYWaNWuWunfvrjlz5uiBBx7QwoULtXfvXmMMvb60c+fOKTY2Vk899dQlt69du1YbN27U2LFjNWPGDLVo0UJpaWmquuBhsu+8847y8/M1ZcoUTZo0SYcOHdKiRYuM7RUVFZo+fbrCw8M1a9YsjRw5Uu+//762bNlijPnuu+/09ttva8CAAZo9e7buuusuvfHGGzp69Og11XIzu1qvJCkpKcnl79qECRNcttOrhpGVlaVBgwYpLS1NU6ZMUU1NjaZPn67KykpjTFP63Xe1WhqFE43qxRdfdC5ZssRYrqmpcT799NPONWvWNF5RN5mVK1c6X3jhhUtuKy8vdz766KPOnTt3GuuOHTvmfOSRR5zfffed0+l0Ovfs2eMcNmyYs6SkxBizadMm5y9/+UtndXW10+l0Ov/61786J06c6DL3n/70J+f06dONZXp9dY888ojzq6++MpZra2udY8eOda5du9ZYV15e7hwxYoRz+/btTqfT6czPz3c+8sgjzpycHGPMP//5T+ewYcOcP/74o9PpPN+v//qv/zL65XQ6ne+++65zwoQJxvKbb77pnDlzpks9L730knPRokX1rqU5MffK6XQ6582b55w9e/ZlX0OvGk9paanzkUcecWZmZjqdzqb1u68+tTQG9iA1IofDodzcXCUkJBjrfHx8lJCQoOzs7Eas7OZTUFCgX/3qV3ruuef0zjvvqLi4WJKUm5urmpoalx506NBB4eHhRg+ys7PVsWNHl129SUlJOnv2rPLz8yVJhw8fdplDOn9ooW4Oeu2ewsJC2e129ezZ01gXFBSkzp07u/QnODhYt956qzEmISFBFotFOTk5xphu3brJav33WQWJiYk6ceKEysrKjDGX6uHhw4frXQvO77kYM2aMJkyYoMWLF+vMmTPGNnrVeCoqKiRJISEhkprW77761NIYOAepEZ0+fVq1tbUXHWO12Ww6ceJE4xR1E+rSpYvGjRunqKgolZSUaPXq1XrllVc0d+5c2e12Wa1WBQcHu7ymVatWxsOML/UQ41atWhnb6v6sW3fhmLNnz6qqqkplZWX02g11399LfW8v/N6Hhoa6bPf19VVISIjLmIiICJcxdb2w2+3G2Ku9z9Vqae6SkpLUu3dvRUREqKCgQO+9955mzJihtLQ04wHh9Krh1dbWatmyZbrtttvUsWNHSWpSv/vqU0tjICDhppecnGx8HRMTYwSmnTt3yt/fvxErA24uffv2Nb7u2LGjYmJi9PzzzyszM/OivQxoOOnp6crPz3c59xJXxyG2RhQaGmr8q+pCl0rt8Jzg4GBFRUWpoKBANptNDodD5eXlLmNKS0uNHthstot6VHdy4YVjzCdbl5aWKjAwUP7+/vTaTXXfm0t9by/83p8+fdple01NjcrKyq7Yw7rlq/Xwwu1XqwWu2rVrp5YtW6qgoEASvWoM6enp2rNnj1599VW1adPGWN+UfvfVp5bGQEBqRFarVXFxcTp48KCxrra2VgcPHlR8fHwjVnZzq6ysNMJRXFycfH19deDAAWP7iRMnVFxcbPQgPj5eR48edfklsH//fgUGBio6OlrS+cN4F85RN6ZuDnrtnoiICNlsNpfvbUVFhXJyclz6U15ertzcXGPMwYMH5XQ6jcuI4+PjdejQITkcDmPM/v37FRUVZZyTER8ff8kedunSpd61wNWPP/6osrIyhYWFSaJXDcnpdCo9PV27du3SK6+8ctFhy6b0u68+tTQGAlIjS01N1aeffqqtW7fq2LFjWrJkic6dO3fRPSTgvoyMDGVlZamwsFDfffed3njjDfn4+Khfv34KCgrSgAEDlJGRoYMHDyo3N1cLFixQfHy88RczMTFR0dHRmjdvnvLy8rR3716tWLFCgwYNMp5kPXDgQBUWFurdd9/V8ePHtWnTJu3cuVMPPPCAUQe9vrTKykrl5eUpLy9P0vkTbPPy8lRcXCyLxaL7779fH3zwgb755hsdPXpU8+bNU1hYmO666y5JUnR0tJKSkrRo0SLl5OTo22+/1dKlS9WnTx+1bt1aktSvXz9ZrVYtXLhQ+fn52rFjhzZu3KjU1FSjjvvvv1/79u3TunXrdPz4ca1atUrff/+9Bg8eLEn1quVmd6VeVVZW6q9//auys7NVWFioAwcOaM6cOYqMjFRiYqIketWQ0tPTtW3bNk2YMEGBgYGy2+2y2+3GbQ6a0u+++tTSGCxOp9PZaO8OSedvoPXhhx/KbrcrNjZWTz75pPEvIVy/t956S4cOHdKZM2cUGhqqrl276tFHH1VkZKSkf9+g7IsvvpDD4bjkDcqKioq0ZMkSZWZmqkWLFkpJSdHjjz9+0c3Sli9frmPHjl3xZmn02lVmZqamTp160fqUlBSNHz/euOHfli1bVFFRoa5du+qpp55yueFdWVmZ0tPTXW4+OHr06MvefLBly5YaPHiwfvGLX7i8586dO7VixQoVFRWpffv2l7354JVquZldqVdjx47VG2+8oSNHjqi8vFytW7dWz549NXz4cJe/S/SqYQwbNuyS68eNG2f8XmpKv/vqU0tDIyABAACYcIgNAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQlAszR+/HjNnz+/Ud571apVGjZs2EUPbgXQdBCQADRJW7du1bBhwzRs2DB9++23F213Op169tlnNWzYMM2aNavB6jp16pRWrVplPI8MwM3J2tgFAMCV+Pn5afv27eratavL+qysLP3444/GQzOv1VtvvSWLxXLNryspKdHq1asVERGh2NhYt94bQNPHHiQATVpycrJ27typmpoal/Xbt29XXFyc2w+z9PPzk9XKvxEBXBq/HQA0af369dPXX3+t/fv3Kzk5WZLkcDj05ZdfaujQodq4caPL+A8//FC7du3SiRMndO7cOUVHR2vIkCG6++67XcaNHz9et99+u8aPHy/p/FPmP/jgA+3bt0+FhYXy8fHRbbfdphEjRhh7ii58mv2CBQu0YMECSa5PSD98+LBWrVql7Oxs1dTU6NZbb9Vjjz120R4ws6KiIk2bNk3+/v56+eWXG/Up5gDYgwSgiWvbtq3i4+P1xRdfGOv++c9/qqKiQn369Llo/MaNGxUbG6thw4bpsccek6+vr958803t2bPniu/zr3/9S19//bXuvPNOjRo1Sj//+c919OhRvfbaazp16pQkqUOHDho2bJgk6d5779Vzzz2n5557Tt26dZMkHTx4UK+++qrOnj2rRx55RI899pgqKio0bdo05eTkXPa9CwoK9OqrryowMFCvvvoq4QhoAtiDBKDJ69u3r9577z1VVVXJ399f27Zt0+23367WrVtfNPbtt9+Wv7+/sTx48GD94Q9/0Pr163XHHXdc9j06duyot99+Wz4+//534z333KPf/va3+uyzz/Twww/LZrMpOTlZq1atUnx8vO655x5jrNPp1OLFi9W9e3e99NJLxvlN9913nyZOnKgVK1ZoypQpF73v8ePHNW3aNLVu3VqTJ09WSEiIW98jAJ7FHiQATV6fPn1UVVWl3bt36+zZs9qzZ4/69et3ybEXhqOysjJVVFSoW7duOnLkyBXfw8/PzwhHtbW1OnPmjAICAhQVFXXV10pSXl6eTp48qX79+unMmTM6ffq0Tp8+rcrKSvXo0UOHDh1SbW2ty2vy8/P12muvKSIiQi+//DLhCGhC2IMEoMkLDQ1VQkKCtm/frnPnzqm2tvaic4rq7N69Wx988IHy8vJUXV1trL/aFWu1tbXasGGDNm/erMLCQpcwU5/gcvLkSUm64r2VKioqXOaaPXu2WrVqpcmTJysgIOCq7wGg4RCQAHiFfv36adGiRbLb7UpKSlJwcPBFYw4dOqQ5c+aoW7dueuqppxQWFiZfX19t3bpV27dvv+L8a9as0cqVK/XTn/5Uw4cPV0hIiCwWi5YvXy6n03nV+urGjBw58rKX/5tDUO/evfX5559r27Ztuu+++676HgAaDgEJgFfo1auX/vznP+vw4cP6zW9+c8kxX331lfz8/DR58mSX+yNt3br1qvN/+eWX6t69u5599lmX9eXl5WrZsqWxfLk9Ue3atZMkBQUFqWfPnld9P0l64okn5OvrqyVLligwMPCyhw0BNDwCEgCvEBAQoDFjxqioqEg/+clPLjnGx8dHFovF5fBYYWGhvv7666vOf+HJ2XV27typU6dOKTIy0ljXokULSeeD04Xi4uLUrl07rVu3Tv369btob9Hp06cVGhp60Xs8/fTTOnv2rObPn6+AgIDLfjYADYuABMBr1N1r6HLuuOMOrV+/XjNmzFDfvn11+vRpbdq0SZGRkfrhhx+u+No777xTq1ev1oIFCxQfH6+jR49q+/btxp6hOu3atVNwcLA++eQTBQYGqkWLFurSpYsiIiL0zDPPaMaMGZo4caL69++v1q1b69SpU8rMzFRgYKAmTZp00fv6+Pjo+eef1xtvvKE//elPevHFF9WjR49r/t4A8CyuYgNw0+jRo4eeeeYZ2e12LV++XF988YUef/xx3XXXXVd97ZAhQ5Samqp9+/Zp2bJlOnLkiCZNmqQ2bdq4jLNarRo/frx8fHy0ePFivf3228rKypIkde/eXWlpaYqLi9OmTZv0l7/8RZ9//rlsNptSU1Mv+95Wq1X//d//rS5dumjOnDk6fPjw9X0jAFw3i7M+Zx8CwE3m2WefVWJiop555pnLjqmsrNRvfvMb42ozAM0He5AANDsOh0NnzpxxOfn6Ur766ivFxMQQjoBmiHOQADQre/fu1Y4dO1RVVaWEhIQrjj19+rTOnDmjwsJCOZ3Oi85HAnDzYg8SgGZl7dq1OnDggB599NGrXo5/991369y5c/rtb3+rb7/9toEqBNAUcA4SAACACXuQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACY/H8+xrsXzhsqbgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "