mlflow
This commit is contained in:
parent
32a592f78d
commit
57def16f1a
7
mlflow/MLproject
Normal file
7
mlflow/MLproject
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
name: MLflow_s464937
|
||||||
|
conda_env: conda.yaml
|
||||||
|
entry_points:
|
||||||
|
optimal_parameters:
|
||||||
|
parameters:
|
||||||
|
epochs: { type: int, default: 20 }
|
||||||
|
command: 'python mlflow_model.py {epochs}'
|
12
mlflow/conda.yaml
Normal file
12
mlflow/conda.yaml
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
name: MLflow_s464937
|
||||||
|
channels:
|
||||||
|
- defaults
|
||||||
|
dependencies:
|
||||||
|
- python=3.10
|
||||||
|
- pip
|
||||||
|
- pip:
|
||||||
|
- wheel
|
||||||
|
- mlflow
|
||||||
|
- tensorflow
|
||||||
|
- pandas
|
||||||
|
- scikit-learn
|
55
mlflow/mlflow_model.py
Normal file
55
mlflow/mlflow_model.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
import sys
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
||||||
|
from sklearn.compose import ColumnTransformer
|
||||||
|
from sklearn.pipeline import Pipeline
|
||||||
|
from tensorflow.keras.models import Sequential
|
||||||
|
from tensorflow.keras.layers import Dense
|
||||||
|
import tensorflow as tf
|
||||||
|
import mlflow
|
||||||
|
|
||||||
|
|
||||||
|
mlflow.set_tracking_uri("http://localhost:5000")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
data = pd.read_csv('./data/train.csv')
|
||||||
|
|
||||||
|
data = data[['Sex', 'Age', 'BodyweightKg', 'TotalKg']].dropna()
|
||||||
|
data['Age'] = pd.to_numeric(data['Age'], errors='coerce')
|
||||||
|
data['BodyweightKg'] = pd.to_numeric(data['BodyweightKg'], errors='coerce')
|
||||||
|
data['TotalKg'] = pd.to_numeric(data['TotalKg'], errors='coerce')
|
||||||
|
features = data[['Sex', 'Age', 'BodyweightKg']]
|
||||||
|
target = data['TotalKg']
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
|
||||||
|
|
||||||
|
preprocessor = ColumnTransformer(
|
||||||
|
transformers=[
|
||||||
|
('num', StandardScaler(), ['Age', 'BodyweightKg']),
|
||||||
|
('cat', OneHotEncoder(), ['Sex'])
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
pipeline = Pipeline(steps=[
|
||||||
|
('preprocessor', preprocessor),
|
||||||
|
('model', Sequential([
|
||||||
|
Dense(64, activation='relu', input_dim=5),
|
||||||
|
Dense(64, activation='relu'),
|
||||||
|
Dense(1)
|
||||||
|
]))
|
||||||
|
])
|
||||||
|
|
||||||
|
pipeline['model'].compile(optimizer='adam', loss='mse', metrics=['mae'])
|
||||||
|
|
||||||
|
X_train_excluded = X_train.iloc[1:]
|
||||||
|
y_train_excluded = y_train.iloc[1:]
|
||||||
|
|
||||||
|
pipeline.fit(X_train_excluded, y_train_excluded, model__epochs=int(sys.argv[1]), model__validation_split=0.1)
|
||||||
|
|
||||||
|
pipeline['model'].save('powerlifting_model.h5')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
6
mlruns/0/meta.yaml
Normal file
6
mlruns/0/meta.yaml
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
artifact_location: mlflow-artifacts:/0
|
||||||
|
creation_time: 1716052187853
|
||||||
|
experiment_id: '0'
|
||||||
|
last_update_time: 1716052187853
|
||||||
|
lifecycle_stage: active
|
||||||
|
name: Default
|
Loading…
Reference in New Issue
Block a user