fix
This commit is contained in:
parent
7e735543b9
commit
8942ab2122
61
model.py
61
model.py
@ -1,44 +1,3 @@
|
||||
# import sys
|
||||
# import pandas as pd
|
||||
# from sklearn.model_selection import train_test_split
|
||||
# from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
||||
# from sklearn.compose import ColumnTransformer
|
||||
# from sklearn.pipeline import Pipeline
|
||||
# from tensorflow.keras.models import Sequential
|
||||
# from tensorflow.keras.layers import Dense
|
||||
# import tensorflow as tf
|
||||
#
|
||||
# data = pd.read_csv('./data/train.csv')
|
||||
#
|
||||
# data = data[['Sex', 'Age', 'BodyweightKg', 'TotalKg']].dropna()
|
||||
#
|
||||
# features = data[['Sex', 'Age', 'BodyweightKg']]
|
||||
# target = data['TotalKg']
|
||||
#
|
||||
# X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
|
||||
#
|
||||
# preprocessor = ColumnTransformer(
|
||||
# transformers=[
|
||||
# ('num', StandardScaler(), ['Age', 'BodyweightKg']),
|
||||
# ('cat', OneHotEncoder(), ['Sex'])
|
||||
# ]
|
||||
# )
|
||||
#
|
||||
# pipeline = Pipeline(steps=[
|
||||
# ('preprocessor', preprocessor),
|
||||
# ('model', Sequential([
|
||||
# Dense(64, activation='relu', input_dim=4),
|
||||
# Dense(64, activation='relu'),
|
||||
# Dense(1)
|
||||
# ]))
|
||||
# ])
|
||||
#
|
||||
# pipeline['model'].compile(optimizer='adam', loss='mse', metrics=['mae'])
|
||||
#
|
||||
# pipeline.fit(X_train, y_train, model__epochs=int(sys.argv[1]), model__validation_split=0.1)
|
||||
#
|
||||
# pipeline['model'].save('powerlifting_model.h5')
|
||||
|
||||
import sys
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
@ -49,26 +8,19 @@ from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.layers import Dense
|
||||
import tensorflow as tf
|
||||
|
||||
data = pd.read_csv('./data/train.csv')
|
||||
data = pd.read_csv('./openpowerlifting.csv')
|
||||
|
||||
print(data.columns) # Debugging: Print DataFrame columns
|
||||
data = data[['Sex', 'Age', 'BodyweightKg', 'TotalKg']].dropna()
|
||||
|
||||
# Assuming the relevant columns are at these indexes
|
||||
features_idx = [1, 4, 7] # Sex, Age, BodyweightKg
|
||||
target_idx = 24 # TotalKg
|
||||
|
||||
# Dropping rows with NaN values from relevant columns
|
||||
data = data.iloc[:, [1, 4, 7, 24]].dropna()
|
||||
|
||||
features = data.iloc[:, features_idx]
|
||||
target = data.iloc[:, target_idx]
|
||||
features = data[['Sex', 'Age', 'BodyweightKg']]
|
||||
target = data['TotalKg']
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
|
||||
|
||||
preprocessor = ColumnTransformer(
|
||||
transformers=[
|
||||
('num', StandardScaler(), [1, 2]), # Age, BodyweightKg
|
||||
('cat', OneHotEncoder(), [0]) # Sex
|
||||
('num', StandardScaler(), ['Age', 'BodyweightKg']),
|
||||
('cat', OneHotEncoder(), ['Sex'])
|
||||
]
|
||||
)
|
||||
|
||||
@ -86,4 +38,3 @@ pipeline['model'].compile(optimizer='adam', loss='mse', metrics=['mae'])
|
||||
pipeline.fit(X_train, y_train, model__epochs=int(sys.argv[1]), model__validation_split=0.1)
|
||||
|
||||
pipeline['model'].save('powerlifting_model.h5')
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user