2022-06-02 11:13:21 +02:00
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow import keras
|
|
|
|
|
|
|
|
|
|
|
|
# loaded_model = keras.models.load_model("my_model")
|
|
|
|
|
|
|
|
def image_classification(path, model):
|
|
|
|
class_names = ['door', 'refrigerator', 'shelf']
|
|
|
|
|
|
|
|
img = tf.keras.utils.load_img(
|
|
|
|
path, target_size=(180, 180)
|
|
|
|
)
|
|
|
|
img_array = tf.keras.utils.img_to_array(img)
|
|
|
|
img_array = tf.expand_dims(img_array, 0) # Create a batch
|
|
|
|
|
|
|
|
predictions = model.predict(img_array)
|
|
|
|
score = tf.nn.softmax(predictions[0])
|
2022-06-06 23:46:27 +02:00
|
|
|
# print(class_names[np.argmax(score)])
|
2022-06-02 11:13:21 +02:00
|
|
|
return class_names[np.argmax(score)]
|
|
|
|
|
|
|
|
|