agent - item recognition loop
This commit is contained in:
parent
bc5bdf6fa4
commit
13e5c5d62c
@ -32,6 +32,7 @@ class ForkliftAgent(AgentBase):
|
||||
self.current_item = None
|
||||
self.item_station_completed = False
|
||||
self.provided_items: List[Item] = []
|
||||
self.ready_for_execution = False
|
||||
|
||||
def queue_movement_actions(self, movement_actions: List[Action]):
|
||||
self.action_queue.extend(movement_actions)
|
||||
@ -102,7 +103,7 @@ class ForkliftAgent(AgentBase):
|
||||
stations = dict(self.graph.packingStations)
|
||||
if i.real_type == ItemType.SHELF:
|
||||
packing_station = stations[PatchType.packingA]
|
||||
elif i.real_type == ItemType.EGG:
|
||||
elif i.real_type == ItemType.FRIDGE:
|
||||
packing_station = stations[PatchType.packingB]
|
||||
elif i.real_type == ItemType.DOOR:
|
||||
packing_station = stations[PatchType.packingC]
|
||||
@ -147,7 +148,7 @@ class ForkliftAgent(AgentBase):
|
||||
def step(self) -> None:
|
||||
if len(self.action_queue) > 0:
|
||||
self.move()
|
||||
elif len(self.orderList) > 0:
|
||||
elif self.ready_for_execution and len(self.orderList) > 0:
|
||||
if (self.current_order is not None and len(self.current_order.items)) == 0:
|
||||
self.fulfilled_orders.append(self.current_order)
|
||||
self.current_order = None
|
||||
|
32
GameModel.py
32
GameModel.py
@ -1,3 +1,4 @@
|
||||
import copy
|
||||
from enum import Enum
|
||||
from typing import List
|
||||
|
||||
@ -14,9 +15,12 @@ from PictureVisualizationAgent import PictureVisualizationAgent
|
||||
from data.GameConstants import GameConstants
|
||||
from data.Item import Item
|
||||
from data.Order import Order
|
||||
from data.enum.ItemType import ItemType
|
||||
from decision.Action import Action
|
||||
from decision.ActionType import ActionType
|
||||
from imageClasification.Classificator import Classificator
|
||||
from pathfinding.PathfinderOnStates import PathFinderOnStates, PathFinderState
|
||||
from util.PathByEnum import PathByEnum
|
||||
from util.PathDefinitions import GridLocation, GridWithWeights
|
||||
|
||||
|
||||
@ -30,7 +34,7 @@ class Phase(Enum):
|
||||
|
||||
class GameModel(Model):
|
||||
|
||||
def __init__(self, width, height, graph: GridWithWeights):
|
||||
def __init__(self, width, height, graph: GridWithWeights, items: int, orders: int, classificator):
|
||||
# self.num_agents = 5
|
||||
self.first = True
|
||||
self.item_recognised = False
|
||||
@ -67,14 +71,16 @@ class GameModel(Model):
|
||||
print("############## INITIALIZATION ##############")
|
||||
self.phase = Phase.INIT
|
||||
self.initialize_grid(graph)
|
||||
self.orderList: List[Order] = InitialStateFactory.generate_order_list(3)
|
||||
self.orderList: List[Order] = InitialStateFactory.generate_order_list(orders)
|
||||
self.fulfilled_orders: List[Order] = []
|
||||
self.forklift_agent.orderList = self.orderList
|
||||
self.forklift_agent.fulfilled_orders = self.fulfilled_orders
|
||||
self.classificator = classificator
|
||||
|
||||
print("############## RECOGNISE ITEMS ##############")
|
||||
self.phase = Phase.ITEM_RECOGNITION
|
||||
self.provided_items = InitialStateFactory.generate_item_list(3)
|
||||
self.provided_items = InitialStateFactory.generate_item_list(items)
|
||||
self.items_for_recognization = copy.deepcopy(self.provided_items)
|
||||
self.recognised_items: List[Item] = []
|
||||
|
||||
print("Relocate forklift agent to loading area for item recognition")
|
||||
@ -160,14 +166,15 @@ class GameModel(Model):
|
||||
if self.phase == Phase.ITEM_RECOGNITION:
|
||||
if not self.item_recognised and self.forklift_agent.current_position == self.drop_off.location:
|
||||
|
||||
if len(self.provided_items) == 0:
|
||||
if len(self.items_for_recognization) == 0:
|
||||
print("FINISHED ITEM RECOGNITION")
|
||||
self.item_recognised = True
|
||||
self.phase = Phase.CLIENT_SORTING
|
||||
self.forklift_agent.ready_for_execution = True
|
||||
else:
|
||||
print("BEGIN ITEM RECOGNITION, left: {}".format(len(self.provided_items)))
|
||||
item_to_recognise = self.provided_items.pop()
|
||||
self.picture_visualization.img = "item_images/door/drzwi1.jpg"
|
||||
print("BEGIN ITEM RECOGNITION, left: {}".format(len(self.items_for_recognization)))
|
||||
item_to_recognise = self.items_for_recognization.pop()
|
||||
self.picture_visualization.img = PathByEnum.get_random_path(item_to_recognise.real_type)
|
||||
recognised = self.recognise_item(item_to_recognise)
|
||||
self.recognised_items.append(recognised)
|
||||
|
||||
@ -182,5 +189,14 @@ class GameModel(Model):
|
||||
|
||||
def recognise_item(self, item: Item):
|
||||
# TODO IMAGE PROCESSING
|
||||
item.guessed_type = item.real_type
|
||||
val = self.classificator.image_clasification(self.picture_visualization.img)
|
||||
print("VAL: {}".format(val))
|
||||
|
||||
if val == ItemType.DOOR:
|
||||
item.guessed_type = ItemType.DOOR
|
||||
elif val == ItemType.FRIDGE:
|
||||
item.guessed_type = ItemType.FRIDGE
|
||||
elif val == ItemType.SHELF:
|
||||
item.guessed_type = ItemType.SHELF
|
||||
|
||||
return item
|
||||
|
@ -2,6 +2,6 @@ from enum import Enum
|
||||
|
||||
|
||||
class ItemType(Enum):
|
||||
DOOR = 1
|
||||
SHELF = 2
|
||||
EGG = 3
|
||||
DOOR = "door"
|
||||
SHELF = "shelf"
|
||||
FRIDGE = "fridge"
|
@ -9,8 +9,13 @@ from tensorflow.keras import layers
|
||||
from tensorflow.keras.models import Sequential
|
||||
|
||||
|
||||
class imageClasification():
|
||||
def train_model(data_dir):
|
||||
class Classificator():
|
||||
|
||||
def __init__(self, data_dir: str) -> None:
|
||||
super().__init__()
|
||||
self.data = self.train_model(data_dir)
|
||||
|
||||
def train_model(self, data_dir):
|
||||
batch_size = 32
|
||||
img_height = 180
|
||||
img_width = 180
|
||||
@ -111,7 +116,7 @@ class imageClasification():
|
||||
plt.show()
|
||||
return model, class_names, img_width, img_height
|
||||
|
||||
def image_clasification(image_path, model, class_names):
|
||||
def image_clasification(self,image_path):
|
||||
# ścieżka do sprawdzanego obrazu
|
||||
# image_path = "./th-367101945.jpg"
|
||||
|
||||
@ -121,11 +126,11 @@ class imageClasification():
|
||||
img_array = tf.keras.utils.img_to_array(img)
|
||||
img_array = tf.expand_dims(img_array, 0) # Create a batch
|
||||
|
||||
predictions = model.predict(img_array)
|
||||
predictions = self.data[0].predict(img_array)
|
||||
score = tf.nn.softmax(predictions[0])
|
||||
|
||||
# print(
|
||||
# "This image most likely belongs to {} with a {:.2f} percent confidence."
|
||||
# .format(class_names[np.argmax(score)], 100 * np.max(score))
|
||||
# )
|
||||
return class_names[np.argmax(score)]
|
||||
print(
|
||||
"This image most likely belongs to {} with a {:.2f} percent confidence."
|
||||
.format(self.data[1][np.argmax(score)], 100 * np.max(score))
|
||||
)
|
||||
return self.data[1][np.argmax(score)]
|
@ -1,13 +1,12 @@
|
||||
from imageClasification import imageClasification
|
||||
from Classificator import Classificator
|
||||
|
||||
#Training model
|
||||
data = imageClasification.train_model("../SI_InteligentnyWozekWidlowy/imageClasification/images")
|
||||
|
||||
data = Classificator.train_model("../SI_InteligentnyWozekWidlowy/imageClasification/images")
|
||||
|
||||
#image_path = ścieżka do klasyfikowanego obrazka
|
||||
#data[0] = model (wytrenowany model
|
||||
#data[1] = class_names
|
||||
image_classified = imageClasification.image_clasification("./th-367101945.jpg",
|
||||
image_classified = Classificator.image_clasification("./th-367101945.jpg",
|
||||
data[0],
|
||||
data[1])
|
||||
|
||||
|
6
main.py
6
main.py
@ -9,11 +9,11 @@ from PatchAgent import PatchAgent
|
||||
from PatchType import PatchType
|
||||
from PictureVisualizationAgent import PictureVisualizationAgent
|
||||
from data.enum.Direction import Direction
|
||||
from imageClasification.Classificator import Classificator
|
||||
from util.PathDefinitions import GridWithWeights
|
||||
from visualization.DisplayAttributeElement import DisplayAttributeElement
|
||||
from visualization.DisplayItemListAttribute import DisplayItemListAttributeElement
|
||||
from visualization.DisplayOrderList import DisplayOrderList
|
||||
from visualization.DisplayPictureElement import DisplayPictureElement
|
||||
|
||||
colors = [
|
||||
'blue', 'cyan', 'orange', 'yellow', 'magenta', 'purple', '#103d3e', '#9fc86c',
|
||||
@ -88,11 +88,13 @@ if __name__ == '__main__':
|
||||
ordersText = DisplayOrderList("orderList")
|
||||
fulfilled_orders = DisplayOrderList("fulfilled_orders")
|
||||
|
||||
classificator = Classificator("imageClasification/images")
|
||||
|
||||
server = ModularServer(GameModel,
|
||||
[grid, readyText, provided_itesm, recognised_items, ordersText,
|
||||
fulfilled_orders],
|
||||
"Automatyczny Wózek Widłowy",
|
||||
{"width": gridHeight, "height": gridWidth, "graph": diagram}, )
|
||||
dict(width=gridHeight, height=gridWidth, graph=diagram, items=50, orders=3, classificator=classificator))
|
||||
|
||||
server.port = 8888
|
||||
server.launch()
|
||||
|
@ -1,14 +1,15 @@
|
||||
from random import random
|
||||
import random
|
||||
|
||||
from data.enum.ItemType import ItemType
|
||||
|
||||
|
||||
class PathByEnum:
|
||||
def get_random_path(self, item:ItemType):
|
||||
@staticmethod
|
||||
def get_random_path(item: ItemType):
|
||||
if item == ItemType.DOOR:
|
||||
a = str(random.randint(1, 10))
|
||||
return "item_images/door/drzwi" + a + ".jpg"
|
||||
if item == ItemType.EGG:
|
||||
if item == ItemType.FRIDGE:
|
||||
a = str(random.randint(1, 10))
|
||||
return "item_images/refrigerator/lodowka" + a + ".jpg"
|
||||
if item == ItemType.SHELF:
|
||||
|
@ -41,7 +41,7 @@ class DisplayItemListAttributeElement(TextElement):
|
||||
elif key == ItemType.SHELF:
|
||||
key_str = "Shelf"
|
||||
|
||||
res += "<li>{}:{}</li>".format(key_str, val)
|
||||
res += "<li>{}:{}</li>".format(key, val)
|
||||
|
||||
res += "</ul>"
|
||||
|
||||
|
@ -38,13 +38,13 @@ class DisplayOrderList(TextElement):
|
||||
key = e
|
||||
val = itemCounter[key]
|
||||
|
||||
key_str = ""
|
||||
if key == ItemType.DOOR:
|
||||
key_str = "Door"
|
||||
elif key == ItemType.SHELF:
|
||||
key_str = "Shelf"
|
||||
# key_str = ""
|
||||
# if key == ItemType.DOOR:
|
||||
# key_str = "Door"
|
||||
# elif key == ItemType.SHELF:
|
||||
# key_str = "Shelf"
|
||||
|
||||
item_str += f"<li>{key_str}:{val}</li>"
|
||||
item_str += f"<li>{str(key)}:{str(val)}</li>"
|
||||
|
||||
item_str += "</ul>"
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user