Compare commits

..

No commits in common. "master" and "test" have entirely different histories.
master ... test

22 changed files with 147 additions and 660 deletions

View File

@ -1,10 +1,8 @@
from copy import deepcopy
from typing import Tuple, List
from AgentBase import AgentBase
from PatchAgent import PatchAgent
from PatchType import PatchType
from data.GameConstants import GameConstants
from data.Item import Item
from data.Order import Order
from data.enum.Direction import Direction
@ -18,7 +16,7 @@ from util.PathDefinitions import GridLocation, GridWithWeights
class ForkliftAgent(AgentBase):
def __init__(self, model, game_constants: GameConstants, client_delivery: PatchAgent, drop_off: PatchAgent,
def __init__(self, model, game_constants, client_delivery: PatchAgent, drop_off: PatchAgent,
graph: GridWithWeights):
super().__init__(model)
self.action_queue: List[Action] = []
@ -30,20 +28,11 @@ class ForkliftAgent(AgentBase):
self.drop_off: PatchAgent = drop_off
self.graph = graph
self.game_constants = game_constants
self.current_order: Order = None
self.current_item = None
self.item_station_completed = False
self.current_order_delivered_items: List[Item] = []
self.provided_items: List[Item] = []
self.ready_for_execution = False
self.last_delviered_item = None
self.current_item: Item = None
self.current_order = None
self.base: GridLocation = None
self.goal: GridLocation = None
def set_base(self, drop_off: PatchAgent):
self.drop_off = drop_off
self.base = self.drop_off.location
self.goal = self.base
def queue_movement_actions(self, movement_actions: List[Action]):
self.action_queue.extend(movement_actions)
@ -54,94 +43,120 @@ class ForkliftAgent(AgentBase):
action_type = action.action_type
if action_type == ActionType.ROTATE_UP:
# print("rotate {} --> {}".format(self.current_rotation, action_type))
print("rotate {} --> {}".format(self.current_rotation, action_type))
self.current_rotation = Direction.top
elif action_type == ActionType.ROTATE_RIGHT:
# print("rotate {} --> {}".format(self.current_rotation, action_type))
print("rotate {} --> {}".format(self.current_rotation, action_type))
self.current_rotation = Direction.right
elif action_type == ActionType.ROTATE_DOWN:
# print("rotate {} --> {}".format(self.current_rotation, action_type))
print("rotate {} --> {}".format(self.current_rotation, action_type))
self.current_rotation = Direction.down
elif action_type == ActionType.ROTATE_LEFT:
# print("rotate {} --> {}".format(self.current_rotation, action_type))
print("rotate {} --> {}".format(self.current_rotation, action_type))
self.current_rotation = Direction.left
elif action_type == ActionType.MOVE:
if self.current_rotation == Direction.top:
# print("move {} --> {}".format(self.current_position, action_type))
print("move {} --> {}".format(self.current_position, action_type))
self.current_position = (self.current_position[0], self.current_position[1] + 1)
elif self.current_rotation == Direction.down:
# print("move {} --> {}".format(self.current_position, action_type))
print("move {} --> {}".format(self.current_position, action_type))
self.current_position = (self.current_position[0], self.current_position[1] - 1)
elif self.current_rotation == Direction.right:
# print("move {} --> {}".format(self.current_position, action_type))
print("move {} --> {}".format(self.current_position, action_type))
self.current_position = (self.current_position[0] + 1, self.current_position[1])
elif self.current_rotation == Direction.left:
# print("move {} --> {}".format(self.current_position, action_type))
print("move {} --> {}".format(self.current_position, action_type))
self.current_position = (self.current_position[0] - 1, self.current_position[1])
def step(self) -> None:
if len(self.action_queue) > 0:
self.move()
elif self.ready_for_execution:
if self.current_position != self.goal:
def plan_actions(self):
if len(self.current_order.items) > 0:
i = self.current_order.items.pop(0)
if self.current_item is None:
self.provided_items.clear()
self.current_item = i
print("PLAN MOVEMENT")
# get item
pathFinder = PathFinderOnStates(
self.game_constants,
self.goal,
self.drop_off.location,
PathFinderState(self.current_position,
self.current_rotation,
0,
Action(ActionType.NONE),
[])
)
actions = pathFinder.get_action_list()
self.queue_movement_actions(actions)
elif not self.item_station_completed:
# go through station
packing_station: GridLocation = None
stations = dict(self.graph.packingStations)
if i.real_type == ItemType.SHELF:
packing_station = stations[PatchType.packingA]
elif i.real_type == ItemType.REFRIGERATOR:
packing_station = stations[PatchType.packingB]
elif i.real_type == ItemType.DOOR:
packing_station = stations[PatchType.packingC]
pathFinder = PathFinderOnStates(
self.game_constants,
packing_station,
PathFinderState(self.current_position,
self.current_rotation,
0,
Action(
desired_item=None,
desired_item=i,
action_type=ActionType.PICK_ITEM
),
[])
)
actions = pathFinder.get_action_list()
self.queue_movement_actions(actions)
self.item_station_completed = True
else:
if self.current_order is not None and self.goal == self.base:
self.current_item = self.current_order.items.pop(0)
packing_station: GridLocation = None
stations = dict(self.graph.packingStations)
if self.current_item.real_type == ItemType.SHELF:
packing_station = stations[PatchType.packingShelf]
elif self.current_item.real_type == ItemType.REFRIGERATOR:
packing_station = stations[PatchType.packingRefrigerator]
elif self.current_item.real_type == ItemType.DOOR:
packing_station = stations[PatchType.packingDoor]
self.goal = packing_station
elif self.goal in [i[1] for i in self.graph.packingStations]:
self.goal = self.client_delivery.location
elif self.goal == self.client_delivery.location:
if self.current_order is not None and len(self.current_order.items) == 0:
self.current_order_delivered_items.append(self.current_item)
self.current_order.items = deepcopy(self.current_order_delivered_items)
self.fulfilled_orders.append(self.current_order)
# go to client delivery area
pathFinder = PathFinderOnStates(
self.game_constants,
self.client_delivery.location,
PathFinderState(self.current_position,
self.current_rotation,
0,
Action(ActionType.NONE),
[])
)
actions = pathFinder.get_action_list()
self.queue_movement_actions(actions)
self.queue_movement_actions(
[Action(ActionType.DROP_ITEM)]
)
self.current_item = None
self.provided_items.append(self.current_item)
self.item_station_completed = False
def step(self) -> None:
if len(self.action_queue) > 0:
self.move()
elif self.ready_for_execution and len(self.orderList) > 0:
if (self.current_order is not None and len(self.current_order.items)) == 0:
self.fulfilled_orders.append(self.current_order)
self.current_order = None
self.goal = self.base
else:
self.current_order_delivered_items.append(self.current_item)
self.goal = self.base
self.current_item = None
elif self.goal == self.base and self.current_order is None:
self.current_order_delivered_items.clear()
if self.current_order is None:
self.current_order = self.orderList.pop(0)
self.plan_actions()
def creation_log(self):
print("Created Forklift Agent [id: {}]".format(self.unique_id))

View File

@ -9,7 +9,6 @@ from mesa.time import RandomActivation
from AgentBase import AgentBase
from ForkliftAgent import ForkliftAgent
from InitialStateFactory import InitialStateFactory
from ItemDisplayAgent import ItemDisplayAgent
from PatchAgent import PatchAgent
from PatchType import PatchType
from PictureVisualizationAgent import PictureVisualizationAgent
@ -19,12 +18,11 @@ from data.Order import Order
from data.enum.ItemType import ItemType
from decision.Action import Action
from decision.ActionType import ActionType
from genetic_order.GeneticOrder import GeneticOrder
from imageClasification.Classificator import image_classification
from pathfinding.PathfinderOnStates import PathFinderOnStates, PathFinderState
from tree.DecisionTree import DecisionTree
from util.PathByEnum import PathByEnum
from util.PathDefinitions import GridLocation, GridWithWeights
from imageClasification.Classificator import image_clasification
class Phase(Enum):
@ -37,9 +35,7 @@ class Phase(Enum):
class GameModel(Model):
def __init__(self, width, height, graph: GridWithWeights, items: int, orders: int, classificator,
item_display_pos: List[GridLocation]):
def __init__(self, width, height, graph: GridWithWeights, items: int, orders: int, classificator):
# self.num_agents = 5
self.first = True
self.item_recognised = False
@ -47,12 +43,10 @@ class GameModel(Model):
self.grid = MultiGrid(height, width, True)
self.schedule = RandomActivation(self)
self.current_item_recognition = None
self.current_item = None
self.client_delivery: PatchAgent = None
self.drop_off: PatchAgent = None
self.graph = graph
self.cut_orders : List[Order] = []
self.game_constants = GameConstants(
width,
@ -73,16 +67,15 @@ class GameModel(Model):
self.schedule.add(self.forklift_agent)
self.agents.append(self.forklift_agent)
self.item_display_agents: List[ItemDisplayAgent] = []
# INITIALIZATION #
print("############## INITIALIZATION ##############")
self.phase = Phase.INIT
self.initialize_grid(graph, item_display_pos)
self.initialize_grid(graph)
self.orderList: List[Order] = InitialStateFactory.generate_order_list(orders)
self.fulfilled_orders: List[Order] = []
self.forklift_agent.orderList = self.orderList
self.forklift_agent.fulfilled_orders = self.fulfilled_orders
self.forklift_agent.set_base(self.drop_off)
self.classificator = classificator
print("############## RECOGNISE ITEMS ##############")
@ -91,8 +84,6 @@ class GameModel(Model):
self.items_for_recognization = copy.deepcopy(self.provided_items)
self.recognised_items: List[Item] = []
self.current_order_delivered_items = self.forklift_agent.current_order_delivered_items
print("Relocate forklift agent to loading area for item recognition")
pathFinder = PathFinderOnStates(
@ -106,9 +97,8 @@ class GameModel(Model):
print("PATHFINDING")
print(actions)
self.forklift_agent.queue_movement_actions(actions)
self.current_order = self.forklift_agent.current_order
def initialize_grid(self, graph: GridWithWeights, item_display_pos):
def initialize_grid(self, graph: GridWithWeights):
print("INITIALIZING GRID")
# Add the agent to a random grid cell
x = 5
@ -129,7 +119,6 @@ class GameModel(Model):
self.place_walls_agents(graph.walls)
self.place_puddles(graph.puddles)
self.place_packing_stations(graph.packingStations)
self.place_order_items_display(item_display_pos)
def place_dividers(self):
for i in range(0, 10):
@ -170,24 +159,10 @@ class GameModel(Model):
self.agents.append(agent)
self.grid.place_agent(agent, p[1])
def place_order_items_display(self, item_positions: List[GridLocation]):
for p in item_positions:
agent = ItemDisplayAgent(self, p)
self.item_display_agents.append(agent)
self.grid.place_agent(agent, p)
def update_item_display(self):
self.current_item = self.forklift_agent.current_item
for i in range(4):
self.item_display_agents[i].image = None
if len(self.forklift_agent.current_order_delivered_items) > i:
self.item_display_agents[i].image = self.forklift_agent.current_order_delivered_items[i].image
def step(self):
self.schedule.step()
self.grid.remove_agent(self.forklift_agent)
self.grid.place_agent(self.forklift_agent, self.forklift_agent.current_position)
self.update_item_display()
if self.phase == Phase.ITEM_RECOGNITION:
if not self.item_recognised and self.forklift_agent.current_position == self.drop_off.location:
@ -205,90 +180,17 @@ class GameModel(Model):
self.recognised_items.append(recognised)
if self.phase == Phase.CLIENT_SORTING:
orders: [Order] = self.orderList
tree: DecisionTree = DecisionTree()
# CLIENT RECOGNITION
orders_with_prio = tree.get_data_good(orders)
# print("before:" )
# for i in range(len(orders_with_prio)):
# print("ORDER {}, PRIO: {}".format(orders_with_prio[i].id, orders_with_prio[i].priority))
# GENERICS SORTING
genericOrder: GeneticOrder = GeneticOrder(orders_with_prio)
new_orders = genericOrder.get_orders_sorted(orders)
# print("after:" )
# for i in range(len(new_orders)):
# print("ORDER {}, PRIO: {}".format(new_orders[i].id, new_orders[i].priority))
self.orderList = new_orders
self.count_recognised_items()
self.sort_orders()
self.forklift_agent.orderList = self.orderList
# TODO GENERICS SORTING
sorted(self.orderList, key=lambda x: len(x.items))
print("FINISHED CLIENT ORDER SORTING")
self.phase = Phase.EXECUTION
if self.phase == Phase.EXECUTION:
self.current_order = self.forklift_agent.current_order
pass
# print("Execution")
def sort_orders(self):
orders_to_fill: [Order] = []
cut_orders: [Order] = []
for i in range(len(self.orderList)):
o: Order = self.orderList[i]
refrige = self.count_item_type(o, ItemType.REFRIGERATOR)
shelf = self.count_item_type(o, ItemType.SHELF)
door = self.count_item_type(o, ItemType.DOOR)
if self.count_shelf - shelf >= 0 and self.count_refrige - refrige >= 0 and self.count_door - door >= 0:
self.count_shelf -= shelf
self.count_door -= door
self.count_refrige -= refrige
orders_to_fill.append(o)
else:
cut_orders.append(o)
self.cut_orders = cut_orders
self.orderList = orders_to_fill
self.forklift_agent.orderList = orders_to_fill
def count_item_type(self, o: Order, itemType: ItemType) -> int:
res = 0
for i in range(len(o.items)):
it: Item = o.items[i]
if it.guessed_type == itemType:
res += 1
return res
def count_recognised_items(self):
count_refrige: int = 0
count_door: int = 0
count_shelf: int = 0
for i in range(len(self.recognised_items)):
item: Item = self.recognised_items[i]
if item.guessed_type == ItemType.DOOR:
count_door += 1
elif item.guessed_type == ItemType.SHELF:
count_shelf += 1
else:
count_refrige += 1
self.count_door = count_door
self.count_shelf = count_shelf
self.count_refrige = count_refrige
print("Execution")
def recognise_item(self, item: Item):
val = image_classification(self.picture_visualization.img, self.classificator)
# TODO IMAGE PROCESSING
val = image_clasification(self.picture_visualization.img, self.classificator)
print("VAL: {}".format(val))
if val == ItemType.DOOR:

View File

@ -3,9 +3,7 @@ import random
from data.Item import Item
from data.Order import Order
from data.enum.ItemType import ItemType
from data.enum.Priority import Priority
from util.ClientParamsFactory import ClientParamsFactory
from util.PathByEnum import PathByEnum
class InitialStateFactory:
@ -26,38 +24,6 @@ class InitialStateFactory:
return order_list
@staticmethod
def generate_order_list_XD(output_order_list_size: int):
order_list: [Order] = []
for i in range(output_order_list_size):
order_list.append(InitialStateFactory.__generate_order_XD())
return order_list
@staticmethod
def __generate_order_XD() -> Order:
order_size = random.randint(1, 4)
items: [Item] = []
for i in range(order_size):
items.append(InitialStateFactory.__generate_item())
time_base = random.randint(8, 20)
final_time = time_base * order_size
client_params = ClientParamsFactory.get_client_params()
x = random.randint(0, 3)
type = Priority.LOW
if x == 0:
type = Priority.MEDIUM
elif x == 1:
type = Priority.HIGH
x = random.randint(20, 300)
return Order(final_time, items, type, x, client_params)
@staticmethod
def __generate_order() -> Order:
order_size = random.randint(1, 4)
@ -71,7 +37,7 @@ class InitialStateFactory:
client_params = ClientParamsFactory.get_client_params()
return Order(final_time, items, Priority.LOW, 0, client_params)
return Order(final_time, items, None, client_params)
@staticmethod
def generate_input_sequence(self, input_sequence_size):
@ -84,6 +50,4 @@ class InitialStateFactory:
@staticmethod
def __generate_item() -> Item:
randomly_picked_type = random.choice(list(ItemType))
item = Item(randomly_picked_type, PathByEnum.get_random_path(randomly_picked_type))
item.guessed_type = item.real_type
return item
return Item(randomly_picked_type)

View File

@ -1,10 +0,0 @@
from PatchAgent import PatchAgent
from PatchType import PatchType
from util.PathDefinitions import GridLocation
class ItemDisplayAgent(PatchAgent):
def __init__(self, model, location: GridLocation):
self.image = None
super().__init__(model, location, patch_type=PatchType.itemDisplay)

View File

@ -7,8 +7,7 @@ class PatchType(enum.Enum):
item = 3
wall = 4
diffTerrain = 5
packingShelf = 6
packingRefrigerator = 7
packingDoor = 8
packingA = 6
packingB = 7
packingC = 8
divider = 9
itemDisplay = 10

View File

@ -1,7 +1,5 @@
from typing import Dict
from data.Item import Item
from data.Order import Order
from data.enum.ItemType import ItemType
from util.PathDefinitions import GridLocation
@ -11,10 +9,16 @@ class GameConstants:
self,
grid_width: int,
grid_height: int,
# delivery_pos: GridLocation,
# order_pos: GridLocation,
# special_positions: Dict[ItemType, GridLocation],
walls: [GridLocation],
diffTerrain: [GridLocation]
):
self.grid_width = grid_width
self.grid_height = grid_height
# self.delivery_pos = delivery_pos
# self.order_pos = order_pos
# self.special_positions = special_positions
self.walls = walls
self.diffTerrain = diffTerrain

View File

@ -6,10 +6,9 @@ from data.enum.ItemType import ItemType
class Item:
id_counter = count(start=0)
def __init__(self, item_type: ItemType, image):
def __init__(self, item_type: ItemType):
self.id = next(self.id_counter)
self.real_type = item_type
self.image = image
self.guessed_type = None
def __repr__(self) -> str:

View File

@ -9,18 +9,12 @@ from data.enum.Priority import Priority
class Order:
id_counter = count(start=0)
def __init__(self, time: int, items: [Item], priority: Priority, sum: int, client_params: ClientParams):
def __init__(self, time: int, items: [Item], priority: Priority, client_params: ClientParams):
self.id = next(self.id_counter)
self.time = time
self.items: List[Item] = items
self.client_params = client_params
self.priority = priority
self.sum = sum
# def sum_items(self, items: [Item]):
# result = 0
# for i in range(len(items)):
# result += items[i]
def __repr__(self) -> str:
return "items: {} priority: {}".format(self.items, self.priority)

View File

@ -1,7 +0,0 @@
from enum import Enum
class GeneticMutationType(Enum):
MUTATION = 1
CROSS = 2
REVERSE = 3

View File

@ -1,7 +1,6 @@
from data.enum.Direction import Direction
from data.Item import Item
from data.Order import Order
from data.enum.Priority import Priority
from decision.ActionType import ActionType
from util.PathDefinitions import GridLocation
@ -11,7 +10,7 @@ class State:
action_taken: ActionType,
forklift_position: GridLocation,
forklift_rotation: Direction,
pending_orders: [Priority, [Order]],
pending_orders: [Order],
filled_orders: [Order],
input_items: [Item]
):

View File

@ -1,9 +0,0 @@
from data.GameConstants import GameConstants
class ForkliftActions:
def __init__(self, game: GameConstants,
) -> None:
self.game = game

View File

@ -1,218 +0,0 @@
import itertools
import random
from data.Order import Order
from data.enum.GeneticMutationType import GeneticMutationType
from data.enum.Priority import Priority
class GeneticOrder:
mutation_chance = 10
reverse_chance = 60
cross_chance = 5
best_fit_special = 50
best_fit_super_special = 20
population_size = 200
number_of_populations = 1000
punish_low = 500
punish_med = 300
punish_sum = 50
def __init__(self, orders: [Order]) -> None:
self.orders = orders
def get_mutation_type(self) -> GeneticMutationType:
x = random.randint(0, self.mutation_chance + self.cross_chance + self.reverse_chance)
if x < self.mutation_chance:
return GeneticMutationType.MUTATION
if x > self.mutation_chance + self.cross_chance:
return GeneticMutationType.REVERSE
return GeneticMutationType.CROSS
def mutation(self, population: [int]) -> [int]:
x = random.randint(0, len(population) - 1)
y = random.randint(0, len(population) - 1)
while x == y:
y = random.randint(0, len(population) - 1)
result = population
pom = population[x]
result[x] = population[y]
result[y] = pom
if (result[x] == result[y]):
print("PIZDA I CHUJ")
return result
def cross(self, population: [int]) -> [int]:
x = random.randint(1, len(population) - 1)
result = []
for i in range(len(population)):
result.append(population[(i + x) % len(population)])
return result
def reverse(self, population: [int]) -> [int]:
x = random.randint(0, len(population))
y = random.randint(0, len(population) - 1)
while y - x > 2 or x >= y:
x = random.randint(0, len(population))
y = random.randint(0, len(population) - 1)
result = []
# print("X: ", x, " y: ", y)
for i in range(len(population)):
if x <= i <= y:
new_i = i - x
# print("len:", len(population), " new_i: ", new_i)
result.append(population[y - new_i])
else:
result.append(population[i])
return result
def generate_first_population(self, k: int) -> [[int]]:
result = []
s = range(len(self.orders))
p = itertools.permutations(s)
while len(result) < k:
n = p.__next__()
if n not in result:
result.append(n)
return [list(x) for x in result]
# result = itertools.permutations(range(len(self.orders)))
#
# return [list(x) for x in result]
def correct_sum(self, last_prio: Priority, last_sum: float, o: Order) -> bool:
if o.priority == last_prio:
return last_sum > o.sum / o.time
return True
def sum_wrong(self, member: [int]) -> int:
last_high = 0
last_med = 0
last_prio = Priority.HIGH
last_sum = 0
counter = 0
for i in range(len(member)):
o: Order = self.orders[member[i]]
if o.priority == Priority.HIGH:
last_high = i
elif o.priority == Priority.MEDIUM:
last_med = i
if not self.correct_sum(last_prio, last_sum, o):
counter += int(last_sum - (o.sum / o.time))
last_prio = o.priority
last_sum = o.sum / o.time
for i in range(last_high):
o: Order = self.orders[member[i]]
if o.priority == Priority.MEDIUM:
counter += self.punish_med
elif o.priority == Priority.LOW:
counter += self.punish_low
for i in range(last_med):
o: Order = self.orders[member[i]]
if o.priority == Priority.LOW:
counter += self.punish_low
return counter
def evaluate(self, member: [int]) -> int:
# result = 0
# for i in range(len(self.orders) - 1):
# x: Order = self.orders[member[i]]
# y: Order = self.orders[member[i + 1]]
#
# if ((x.priority == Priority.MEDIUM or x.priority == Priority.LOW) and y.priority == Priority.HIGH) or (x.priority == Priority.LOW and y.priority == Priority.MEDIUM):
# result += 30
#
# if x.sum / x.time < y.sum / y.time:
# result += int(y.sum / y.time)
# return result
return self.sum_wrong(member)
def mutate_population(self, order_population: [[int]]) -> [[int]]:
result = []
for i in range(len(order_population)):
member: [int] = order_population[i]
operation: GeneticMutationType = self.get_mutation_type()
if operation == GeneticMutationType.MUTATION:
member = self.mutation(member)
elif operation == GeneticMutationType.REVERSE:
member = self.reverse(member)
else:
member = self.cross(member)
result.append(member)
return result
def get_next_population(self, population: [[int]]) -> [[int]]:
result = []
for i in range(len(population) - self.best_fit_special - self.best_fit_super_special):
result.append(population[i])
for i in range(self.best_fit_special):
x = random.randint(0, self.best_fit_special)
result.append(population[x])
for i in range(self.best_fit_super_special):
x = random.randint(0, self.best_fit_super_special)
result.append(population[x])
return result
def get_orders_sorted(self, orders: [Order]) -> [Order]:
self.orders = orders
population: [[int]] = self.generate_first_population(self.population_size)
# print(population)
population.sort(key=self.evaluate)
best_fit: [int] = population[0]
for i in range(self.number_of_populations):
# print("population: ", i)
population = self.mutate_population(population)
population.sort(key=self.evaluate)
if self.evaluate(best_fit) > self.evaluate(population[0]):
best_fit = population[0]
# population = self.get_next_population(population).sort(key=self.evaluate)
if self.evaluate(best_fit) < self.evaluate(population[0]):
population[0] = best_fit
best: [int] = population[0]
result: [Order] = []
for i in range(len(best)):
result.append(self.orders[best[i]])
return result

View File

@ -1,22 +1,23 @@
import numpy as np
import tensorflow as tf
from tensorflow import keras
def image_clasification(image_path, model):
# loaded_model = keras.models.load_model("my_model")
def image_classification(path, model):
class_names = ['door', 'refrigerator', 'shelf']
img = tf.keras.utils.load_img(
path, target_size=(180, 180)
image_path, target_size=(180, 180)
)
img_array = tf.keras.utils.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create a batch
predictions = model.predict(img_array)
score = tf.nn.softmax(predictions[0])
# print(class_names[np.argmax(score)])
# print(
# "This image most likely belongs to {} with a {:.2f} percent confidence."
# .format(class_names[np.argmax(score)], 100 * np.max(score))
# )
return class_names[np.argmax(score)]

View File

@ -9,7 +9,7 @@ from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
class TrainClassificator():
class ClassificatorInside():
def __init__(self, data_dir: str) -> None:
super().__init__()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

45
main.py
View File

@ -6,7 +6,6 @@ from tensorflow import keras
from ForkliftAgent import ForkliftAgent
from GameModel import GameModel
from ItemDisplayAgent import ItemDisplayAgent
from PatchAgent import PatchAgent
from PatchType import PatchType
from PictureVisualizationAgent import PictureVisualizationAgent
@ -14,7 +13,6 @@ from data.enum.Direction import Direction
from util.PathDefinitions import GridWithWeights
from visualization.DisplayAttributeElement import DisplayAttributeElement
from visualization.DisplayItemListAttribute import DisplayItemListAttributeElement
from visualization.DisplayOrder import DisplayOrder
from visualization.DisplayOrderList import DisplayOrderList
colors = [
@ -35,7 +33,7 @@ def agent_portrayal(agent):
elif agent.current_rotation == Direction.left:
shape = "img/image_left.png"
portrayal = {"Shape": shape, "scale": 1.0, "Layer": 2}
portrayal = {"Shape": shape, "scale": 1.0, "Layer": 0}
if isinstance(agent, PatchAgent):
color = colors[0]
@ -47,13 +45,6 @@ def agent_portrayal(agent):
portrayal = {"Shape": "img/okB00mer.png", "scale": 1.0, "Layer": 0}
elif agent.patch_type == PatchType.diffTerrain:
portrayal = {"Shape": "img/puddle.png", "scale": 1.0, "Layer": 0}
elif agent.patch_type == PatchType.packingShelf:
portrayal = {"Shape": "img/shelf_s.jpg", "scale": 1.0, "Layer": 1}
elif agent.patch_type == PatchType.packingRefrigerator:
portrayal = {"Shape": "img/fridge_f.jpg", "scale": 1.0, "Layer": 1}
elif agent.patch_type == PatchType.packingDoor:
portrayal = {"Shape": "img/door_d.jpg", "scale": 1.0, "Layer": 1}
elif agent.patch_type == PatchType.divider:
portrayal = \
{"Shape": "rect",
@ -74,18 +65,6 @@ def agent_portrayal(agent):
if isinstance(agent, PictureVisualizationAgent):
portrayal = {"Shape": f"{agent.img}", "scale": 3.0, "Layer": 0}
if isinstance(agent, ItemDisplayAgent):
if agent is not None and agent.image is not None:
portrayal = {"Shape": f"{agent.image}", "scale": 1.0, "Layer": 0}
else:
portrayal = \
{"Shape": "rect",
"Filled": "true",
"Layer": 0,
"Color": "black",
"w": 1,
"h": 1}
return portrayal
@ -96,32 +75,26 @@ if __name__ == '__main__':
scale = base / gridWidth
diagram = GridWithWeights(gridWidth, gridHeight)
diagram.walls = [(6, 5), (6, 6), (6, 7), (6, 8), (2, 3), (2, 4), (2, 6), (4, 7), (3, 4), (4, 4), (6, 4)]
diagram.puddles = [(2, 2), (2, 5), (5, 4), (4, 8), (4, 6), (4, 2)]
diagram.packingStations = [(PatchType.packingShelf, (4, 8)), (PatchType.packingRefrigerator, (4, 6)),
(PatchType.packingDoor, (4, 2))]
diagram.walls = [(6, 5), (6, 6), (6, 7), (6, 8), (2, 3), (2, 4), (3, 4), (4, 4), (6, 4)]
diagram.puddles = [(2, 2), (2, 5), (2, 6), (5, 4)]
diagram.packingStations = [(PatchType.packingA, (4, 8)), (PatchType.packingB, (4, 6)), (PatchType.packingC, (4, 2))]
grid = CanvasGrid(agent_portrayal, gridWidth, gridHeight, scale * gridWidth, scale * gridHeight)
display_items = [(6, 11), (7, 11), (8, 11), (9, 11)]
readyText = DisplayAttributeElement("phase")
# current_item = DisplayPictureElement("current_item_recognition")
provided_itesm = DisplayItemListAttributeElement("provided_items")
recognised_items = DisplayItemListAttributeElement("recognised_items")
current_order = DisplayOrder("current_order")
current_item = DisplayAttributeElement("current_item")
ordersText = DisplayOrderList("orderList")
fulfilled_orders = DisplayOrderList("fulfilled_orders")
cut_orders = DisplayOrderList("cut_orders") # MTR!
model = keras.models.load_model("imageClasification/my_model")
loaded_model = keras.models.load_model("./imageClasification/my_model")
server = ModularServer(GameModel,
[grid, readyText, current_item, current_order, fulfilled_orders, ordersText, provided_itesm,
recognised_items, cut_orders],
[grid, readyText, provided_itesm, recognised_items, ordersText,
fulfilled_orders],
"Automatyczny Wózek Widłowy",
dict(width=gridHeight, height=gridWidth, graph=diagram, items=60, orders=20,
classificator=model, item_display_pos=display_items))
dict(width=gridHeight, height=gridWidth, graph=diagram, items=50, orders=3, classificator=loaded_model))
server.port = 8888
server.launch()

View File

@ -57,7 +57,7 @@ class PathFinderOnStates:
if action == action.action_type.MOVE:
if curr_state.agent_position in self.game_constants.diffTerrain:
cost = curr_state.cost + 45
cost = curr_state.cost + 20
# tutaj koszt kaluzy
else:
cost = curr_state.cost + 1

View File

@ -1,17 +1,11 @@
import csv
import numpy as np
import pandas
import sklearn
from sklearn import metrics, preprocessing
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from InitialStateFactory import InitialStateFactory
from data.ClientParams import ClientParams
from data.Order import Order
from data.enum.CompanySize import CompanySize
from data.enum.Priority import Priority
from util.ClientParamsFactory import ClientParamsFactory
@ -64,63 +58,6 @@ class DecisionTree:
print("\nDecisionTrees's Accuracy: ", metrics.accuracy_score(y, prediction))
def get_data_good(self, orders: [Order]) -> [Order]:
n_array_input = []
for i in range(len(orders)):
o:Order = orders[i]
cp: ClientParams = o.client_params
pom = []
pom.append(cp.payment_delay)
pom.append(cp.payed)
pom.append(cp.net_worth)
pom.append(cp.infuence_rate)
pom.append(cp.is_skarbowka)
pom.append(cp.membership)
pom.append(cp.is_hat)
size: CompanySize = cp.company_size
if(size == CompanySize.NO):
pom.append(0)
if (size == CompanySize.SMALL):
pom.append(1)
if (size == CompanySize.NORMAL):
pom.append(2)
if (size == CompanySize.BIG):
pom.append(3)
if (size == CompanySize.HUGE):
pom.append(4)
if (size == CompanySize.GIGANTISHE):
pom.append(5)
n_array_input.append(pom)
n_array = np.array(n_array_input)
# print(n_array)
# print(n_array[0])
tree = self.get_decision_tree()
priority = tree.predict(n_array)
for i in range(len(orders)):
print(orders[i].priority)
orders[i].priority = priority[i]
if priority[i] == "LOW":
orders[i].priority = Priority.LOW
if priority[i] == "MEDIUM":
orders[i].priority = Priority.MEDIUM
if priority[i] == "HIGH":
orders[i].priority = Priority.HIGH
print(orders[i].priority)
return orders
def get_decision_tree(self) -> DecisionTreeClassifier:
@ -135,25 +72,15 @@ class DecisionTree:
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, train_size=0.8)
# print(len(X_train[0]))
# print(X_train[0])
drugTree = DecisionTreeClassifier(criterion="entropy", max_depth=4)
clf = drugTree.fit(X_train, y_train)
predicted = drugTree.predict(X_test)
# print(type(X_test))
y_test = y_test.to_list()
# self.print_logs(X_test, y_test, predicted)
self.print_logs(X_test, y_test, predicted)
# print(sklearn.tree.export_text(clf, feature_names=X_headers))
print(sklearn.tree.export_text(clf, feature_names=X_headers))
return drugTree
# kurwa = DecisionTree()
# kurwa.get_data_good(InitialStateFactory.generate_order_list(50))

View File

@ -1,46 +0,0 @@
from collections import Counter
from typing import List
from mesa.visualization.modules import TextElement
from data.Order import Order
class DisplayOrder(TextElement):
def __init__(self, attr_name):
'''
Create a new text attribute element.
Args:
attr_name: The name of the attribute to extract from the model.
Example return: "happy: 10"
'''
self.attr_name = attr_name
def render(self, model):
val = getattr(model, self.attr_name)
res = self.attr_name
if val is not None:
o = val
itemList = map(lambda x: x.real_type, o.items)
itemCounter = Counter(itemList)
item_str = "<ul>"
for e in itemCounter:
key = e
val = itemCounter[key]
# key_str = ""
# if key == ItemType.DOOR:
# key_str = "Door"
# elif key == ItemType.SHELF:
# key_str = "Shelf"
item_str += f"<li>{str(key)}:{str(val)}</li>"
item_str += "</ul>"
res += f"<li> items: {item_str} priority: {o.priority} <br> Client: {vars(o.client_params)} </li>"
return res

View File

@ -4,6 +4,7 @@ from typing import List
from mesa.visualization.modules import TextElement
from data.Order import Order
from data.enum.ItemType import ItemType
class DisplayOrderList(TextElement):
@ -20,8 +21,7 @@ class DisplayOrderList(TextElement):
def render(self, model):
val = getattr(model, self.attr_name)
res = ""
if val is not None:
orderList: List[Order] = val
res = self.attr_name + ": <ol>"