genetic -> master #4
@ -46,14 +46,16 @@ class InitialStateFactory:
|
|||||||
|
|
||||||
client_params = ClientParamsFactory.get_client_params()
|
client_params = ClientParamsFactory.get_client_params()
|
||||||
|
|
||||||
x = random.randint(0, 2)
|
x = random.randint(0, 3)
|
||||||
type = Priority.LOW
|
type = Priority.LOW
|
||||||
if x == 0:
|
if x == 0:
|
||||||
type = Priority.MEDIUM
|
type = Priority.MEDIUM
|
||||||
elif x == 2:
|
elif x == 1:
|
||||||
type = Priority.HIGH
|
type = Priority.HIGH
|
||||||
|
|
||||||
return Order(final_time, items, type, client_params)
|
x = random.randint(20, 300)
|
||||||
|
|
||||||
|
return Order(final_time, items, type, x, client_params)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def __generate_order() -> Order:
|
def __generate_order() -> Order:
|
||||||
@ -68,7 +70,7 @@ class InitialStateFactory:
|
|||||||
|
|
||||||
client_params = ClientParamsFactory.get_client_params()
|
client_params = ClientParamsFactory.get_client_params()
|
||||||
|
|
||||||
return Order(final_time, items, None, client_params)
|
return Order(final_time, items, Priority.LOW, 0, client_params)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def generate_input_sequence(self, input_sequence_size):
|
def generate_input_sequence(self, input_sequence_size):
|
||||||
|
@ -9,13 +9,13 @@ from data.enum.Priority import Priority
|
|||||||
class Order:
|
class Order:
|
||||||
id_counter = count(start=0)
|
id_counter = count(start=0)
|
||||||
|
|
||||||
def __init__(self, time: int, items: [Item], priority: Priority, client_params: ClientParams):
|
def __init__(self, time: int, items: [Item], priority: Priority, sum: int, client_params: ClientParams):
|
||||||
self.id = next(self.id_counter)
|
self.id = next(self.id_counter)
|
||||||
self.time = time
|
self.time = time
|
||||||
self.items: List[Item] = items
|
self.items: List[Item] = items
|
||||||
self.client_params = client_params
|
self.client_params = client_params
|
||||||
self.priority = priority
|
self.priority = priority
|
||||||
self.sum = 0
|
self.sum = sum
|
||||||
|
|
||||||
# def sum_items(self, items: [Item]):
|
# def sum_items(self, items: [Item]):
|
||||||
# result = 0
|
# result = 0
|
||||||
|
@ -7,24 +7,29 @@ from data.enum.Priority import Priority
|
|||||||
|
|
||||||
|
|
||||||
class GeneticOrder:
|
class GeneticOrder:
|
||||||
mutation_chance = 50
|
mutation_chance = 10
|
||||||
reverse_chance = 20
|
reverse_chance = 60
|
||||||
cross_chance = 10
|
cross_chance = 5
|
||||||
best_fit_special = 40
|
|
||||||
best_fit_special_2 = 20
|
best_fit_special = 50
|
||||||
population_size = 500
|
best_fit_super_special = 20
|
||||||
|
|
||||||
|
population_size = 200
|
||||||
|
number_of_populations = 1000
|
||||||
|
|
||||||
|
punish_low = 5
|
||||||
|
punish_med = 3
|
||||||
|
|
||||||
def __init__(self, orders: [Order]) -> None:
|
def __init__(self, orders: [Order]) -> None:
|
||||||
self.number_of_populations = 10000
|
|
||||||
self.orders = orders
|
self.orders = orders
|
||||||
|
|
||||||
def get_mutation_type(self) -> GeneticMutationType:
|
def get_mutation_type(self) -> GeneticMutationType:
|
||||||
x = random.randint(0, self.mutation_chance + self.cross_chance + self.reverse_chance)
|
x = random.randint(0, self.mutation_chance + self.cross_chance + self.reverse_chance)
|
||||||
|
|
||||||
if (x < self.mutation_chance):
|
if x < self.mutation_chance:
|
||||||
return GeneticMutationType.MUTATION
|
return GeneticMutationType.MUTATION
|
||||||
|
|
||||||
if (x > self.mutation_chance + self.cross_chance):
|
if x > self.mutation_chance + self.cross_chance:
|
||||||
return GeneticMutationType.REVERSE
|
return GeneticMutationType.REVERSE
|
||||||
|
|
||||||
return GeneticMutationType.CROSS
|
return GeneticMutationType.CROSS
|
||||||
@ -59,7 +64,7 @@ class GeneticOrder:
|
|||||||
def reverse(self, population: [int]) -> [int]:
|
def reverse(self, population: [int]) -> [int]:
|
||||||
x = random.randint(0, len(population))
|
x = random.randint(0, len(population))
|
||||||
y = random.randint(0, len(population)-1)
|
y = random.randint(0, len(population)-1)
|
||||||
while x >= y:
|
while y - x > 2 or x >= y:
|
||||||
x = random.randint(0, len(population))
|
x = random.randint(0, len(population))
|
||||||
y = random.randint(0, len(population) - 1)
|
y = random.randint(0, len(population) - 1)
|
||||||
|
|
||||||
@ -92,18 +97,48 @@ class GeneticOrder:
|
|||||||
#
|
#
|
||||||
# return [list(x) for x in result]
|
# return [list(x) for x in result]
|
||||||
|
|
||||||
|
def sum_wrong(self, member: [int]) -> int:
|
||||||
|
last_high = 0
|
||||||
|
last_med = 0
|
||||||
|
counter = 0
|
||||||
|
|
||||||
|
for i in range(len(member)):
|
||||||
|
o: Order = self.orders[member[i]]
|
||||||
|
if o.priority == Priority.HIGH :
|
||||||
|
last_high = i
|
||||||
|
elif o.priority == Priority.MEDIUM:
|
||||||
|
last_med = i
|
||||||
|
|
||||||
|
for i in range(last_high):
|
||||||
|
o: Order = self.orders[member[i]]
|
||||||
|
if o.priority == Priority.MEDIUM:
|
||||||
|
counter += self.punish_med
|
||||||
|
elif o.priority == Priority.LOW:
|
||||||
|
counter += self.punish_low
|
||||||
|
|
||||||
|
for i in range(last_med):
|
||||||
|
o: Order = self.orders[member[i]]
|
||||||
|
if o.priority == Priority.LOW:
|
||||||
|
counter += self.punish_low
|
||||||
|
|
||||||
|
return counter
|
||||||
|
|
||||||
|
|
||||||
def evaluate(self, member: [int]) -> int:
|
def evaluate(self, member: [int]) -> int:
|
||||||
result = 0
|
# result = 0
|
||||||
for i in range(len(self.orders) - 1):
|
# for i in range(len(self.orders) - 1):
|
||||||
x: Order = self.orders[member[i]]
|
# x: Order = self.orders[member[i]]
|
||||||
y: Order = self.orders[member[i + 1]]
|
# y: Order = self.orders[member[i + 1]]
|
||||||
|
#
|
||||||
|
# if ((x.priority == Priority.MEDIUM or x.priority == Priority.LOW) and y.priority == Priority.HIGH) or (x.priority == Priority.LOW and y.priority == Priority.MEDIUM):
|
||||||
|
# result += 30
|
||||||
|
#
|
||||||
|
# if x.sum / x.time < y.sum / y.time:
|
||||||
|
# result += int(y.sum / y.time)
|
||||||
|
|
||||||
if ((x.priority == Priority.MEDIUM or x.priority == Priority.LOW) and y.priority == Priority.HIGH) or (x.priority == Priority.LOW and y.priority == Priority.MEDIUM):
|
# return result
|
||||||
result += 5000
|
|
||||||
elif x.sum / x.time < y.sum / y.time:
|
|
||||||
result += y.sum * 5 + y.time
|
|
||||||
|
|
||||||
return result
|
return self.sum_wrong(member)
|
||||||
|
|
||||||
def mutate_population(self, order_population: [[int]]) -> [[int]]:
|
def mutate_population(self, order_population: [[int]]) -> [[int]]:
|
||||||
result = []
|
result = []
|
||||||
@ -126,20 +161,16 @@ class GeneticOrder:
|
|||||||
def get_next_population(self, population: [[int]]) -> [[int]]:
|
def get_next_population(self, population: [[int]]) -> [[int]]:
|
||||||
result = []
|
result = []
|
||||||
|
|
||||||
result = population
|
for i in range(len(population) - self.best_fit_special - self.best_fit_super_special):
|
||||||
|
result.append(population[i])
|
||||||
|
|
||||||
# for i in range(len(population) - self.best_fit_special):
|
for i in range(self.best_fit_special):
|
||||||
# result.append(population[i])
|
x = random.randint(0, self.best_fit_special)
|
||||||
#
|
result.append(population[x])
|
||||||
# k = len(population) - self.best_fit_special
|
|
||||||
# while k < len(population) - self.best_fit_special_2:
|
for i in range(self.best_fit_super_special):
|
||||||
# n = random.randint(0, self.best_fit_special)
|
x = random.randint(0, self.best_fit_super_special)
|
||||||
# result.append(population[n])
|
result.append(population[x])
|
||||||
#
|
|
||||||
# left_size = len(population) - k
|
|
||||||
# while left_size < len(population):
|
|
||||||
# n = random.randint(0, self.best_fit_special_2)
|
|
||||||
# result.append(population[n])
|
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@ -147,7 +178,7 @@ class GeneticOrder:
|
|||||||
self.orders = orders
|
self.orders = orders
|
||||||
|
|
||||||
population: [[int]] = self.generate_first_population(self.population_size)
|
population: [[int]] = self.generate_first_population(self.population_size)
|
||||||
print(population)
|
# print(population)
|
||||||
|
|
||||||
population.sort(key=self.evaluate)
|
population.sort(key=self.evaluate)
|
||||||
best_fit: [int] = population[0]
|
best_fit: [int] = population[0]
|
||||||
|
73
main.py
73
main.py
@ -1,3 +1,4 @@
|
|||||||
|
import math
|
||||||
import random
|
import random
|
||||||
|
|
||||||
from mesa.visualization.ModularVisualization import ModularServer
|
from mesa.visualization.ModularVisualization import ModularServer
|
||||||
@ -101,42 +102,68 @@ if __name__ == '__main__':
|
|||||||
"Automatyczny Wózek Widłowy",
|
"Automatyczny Wózek Widłowy",
|
||||||
dict(width=gridHeight, height=gridWidth, graph=diagram, items=50, orders=3, classificator=model))
|
dict(width=gridHeight, height=gridWidth, graph=diagram, items=50, orders=3, classificator=model))
|
||||||
|
|
||||||
def pizda(order: Order):
|
def order_rule(order: Order):
|
||||||
return order.id
|
return order.id
|
||||||
|
|
||||||
def evaluate(member: [Order]) -> int:
|
|
||||||
result = 0
|
|
||||||
for i in range(len(member) - 1):
|
|
||||||
x: Order = member[i]
|
|
||||||
y: Order = member[i + 1]
|
|
||||||
|
|
||||||
if ((x.priority == Priority.MEDIUM or x.priority == Priority.LOW) and y.priority == Priority.HIGH) or (x.priority == Priority.LOW and y.priority == Priority.MEDIUM):
|
punish_low = 5
|
||||||
result += 5000
|
punish_med = 3
|
||||||
|
def sum_wrong(member: [Order]) -> int:
|
||||||
|
last_high = 0
|
||||||
|
last_med = 0
|
||||||
|
|
||||||
return result
|
sum_high = 0
|
||||||
|
sum_med = 0
|
||||||
|
sum_low = 0
|
||||||
|
|
||||||
|
counter = 0
|
||||||
|
|
||||||
|
for i in range(len(member)):
|
||||||
|
o: Order = member[i]
|
||||||
|
if o.priority == Priority.HIGH :
|
||||||
|
sum_high += 1
|
||||||
|
last_high = i
|
||||||
|
elif o.priority == Priority.MEDIUM:
|
||||||
|
sum_med += 1
|
||||||
|
last_med = i
|
||||||
|
else:
|
||||||
|
sum_low += 1
|
||||||
|
|
||||||
|
for i in range(last_high):
|
||||||
|
o: Order = member[i]
|
||||||
|
if o.priority == Priority.MEDIUM:
|
||||||
|
counter += punish_med
|
||||||
|
elif o.priority == Priority.LOW:
|
||||||
|
counter += punish_low
|
||||||
|
|
||||||
|
for i in range(last_med):
|
||||||
|
o: Order = member[i]
|
||||||
|
if o.priority == Priority.LOW:
|
||||||
|
counter += punish_low
|
||||||
|
|
||||||
|
print("sum: high:", sum_high, "med:", sum_med, "low:", sum_low)
|
||||||
|
print("last_high:", last_high, "last_med:", last_med, "sum:", counter)
|
||||||
|
return counter
|
||||||
|
|
||||||
orders = InitialStateFactory.generate_order_list_XD(20)
|
orders = InitialStateFactory.generate_order_list_XD(20)
|
||||||
test: GeneticOrder = GeneticOrder(orders)
|
test: GeneticOrder = GeneticOrder(orders)
|
||||||
print("SIEMA: ", evaluate(orders))
|
punish_low = test.punish_low
|
||||||
|
punish_med = test.punish_med
|
||||||
|
|
||||||
|
print("SIEMA before: ")
|
||||||
|
sum_wrong(orders)
|
||||||
# for i in orders:
|
# for i in orders:
|
||||||
# print("id: {}, priority: {}", i.id, i.priority)
|
# # print("id:", i.id, "priority:", i.priority, "sum/time:", i.sum/i.time)
|
||||||
|
# print("id:", i.id, "priority:", i.priority)
|
||||||
|
|
||||||
newOrders = test.get_orders_sorted(orders)
|
newOrders = test.get_orders_sorted(orders)
|
||||||
|
|
||||||
print("NAURA:", evaluate(newOrders))
|
print("NAURA after:")
|
||||||
|
sum_wrong(newOrders)
|
||||||
# for i in newOrders:
|
# for i in newOrders:
|
||||||
# print("id: {}, priority: {}", i.id, i.priority)
|
# # print("id:", i.id, "priority:", i.priority, "sum/time:", i.sum/i.time)
|
||||||
|
# print("id:", i.id, "priority:", i.priority)
|
||||||
|
|
||||||
# orders.sort(key=pizda)
|
|
||||||
# newOrders.sort(key=pizda)
|
|
||||||
#
|
|
||||||
# print("SIEMA:")
|
|
||||||
# for i in orders:
|
|
||||||
# print("id: {}, priority: {}", i.id, i.priority)
|
|
||||||
#
|
|
||||||
# print("NAURA:")
|
|
||||||
# for i in newOrders:
|
|
||||||
# print("id: {}, priority: {}", i.id, i.priority)
|
|
||||||
|
|
||||||
|
|
||||||
# server.port = 8888
|
# server.port = 8888
|
||||||
|
Loading…
Reference in New Issue
Block a user