genetic -> master #4
@ -46,14 +46,16 @@ class InitialStateFactory:
|
||||
|
||||
client_params = ClientParamsFactory.get_client_params()
|
||||
|
||||
x = random.randint(0, 2)
|
||||
x = random.randint(0, 3)
|
||||
type = Priority.LOW
|
||||
if x == 0:
|
||||
type = Priority.MEDIUM
|
||||
elif x == 2:
|
||||
elif x == 1:
|
||||
type = Priority.HIGH
|
||||
|
||||
return Order(final_time, items, type, client_params)
|
||||
x = random.randint(20, 300)
|
||||
|
||||
return Order(final_time, items, type, x, client_params)
|
||||
|
||||
@staticmethod
|
||||
def __generate_order() -> Order:
|
||||
@ -68,7 +70,7 @@ class InitialStateFactory:
|
||||
|
||||
client_params = ClientParamsFactory.get_client_params()
|
||||
|
||||
return Order(final_time, items, None, client_params)
|
||||
return Order(final_time, items, Priority.LOW, 0, client_params)
|
||||
|
||||
@staticmethod
|
||||
def generate_input_sequence(self, input_sequence_size):
|
||||
|
@ -9,13 +9,13 @@ from data.enum.Priority import Priority
|
||||
class Order:
|
||||
id_counter = count(start=0)
|
||||
|
||||
def __init__(self, time: int, items: [Item], priority: Priority, client_params: ClientParams):
|
||||
def __init__(self, time: int, items: [Item], priority: Priority, sum: int, client_params: ClientParams):
|
||||
self.id = next(self.id_counter)
|
||||
self.time = time
|
||||
self.items: List[Item] = items
|
||||
self.client_params = client_params
|
||||
self.priority = priority
|
||||
self.sum = 0
|
||||
self.sum = sum
|
||||
|
||||
# def sum_items(self, items: [Item]):
|
||||
# result = 0
|
||||
|
@ -7,24 +7,29 @@ from data.enum.Priority import Priority
|
||||
|
||||
|
||||
class GeneticOrder:
|
||||
mutation_chance = 50
|
||||
reverse_chance = 20
|
||||
cross_chance = 10
|
||||
best_fit_special = 40
|
||||
best_fit_special_2 = 20
|
||||
population_size = 500
|
||||
mutation_chance = 10
|
||||
reverse_chance = 60
|
||||
cross_chance = 5
|
||||
|
||||
best_fit_special = 50
|
||||
best_fit_super_special = 20
|
||||
|
||||
population_size = 200
|
||||
number_of_populations = 1000
|
||||
|
||||
punish_low = 5
|
||||
punish_med = 3
|
||||
|
||||
def __init__(self, orders: [Order]) -> None:
|
||||
self.number_of_populations = 10000
|
||||
self.orders = orders
|
||||
|
||||
def get_mutation_type(self) -> GeneticMutationType:
|
||||
x = random.randint(0, self.mutation_chance + self.cross_chance + self.reverse_chance)
|
||||
|
||||
if (x < self.mutation_chance):
|
||||
if x < self.mutation_chance:
|
||||
return GeneticMutationType.MUTATION
|
||||
|
||||
if (x > self.mutation_chance + self.cross_chance):
|
||||
if x > self.mutation_chance + self.cross_chance:
|
||||
return GeneticMutationType.REVERSE
|
||||
|
||||
return GeneticMutationType.CROSS
|
||||
@ -59,7 +64,7 @@ class GeneticOrder:
|
||||
def reverse(self, population: [int]) -> [int]:
|
||||
x = random.randint(0, len(population))
|
||||
y = random.randint(0, len(population)-1)
|
||||
while x >= y:
|
||||
while y - x > 2 or x >= y:
|
||||
x = random.randint(0, len(population))
|
||||
y = random.randint(0, len(population) - 1)
|
||||
|
||||
@ -92,18 +97,48 @@ class GeneticOrder:
|
||||
#
|
||||
# return [list(x) for x in result]
|
||||
|
||||
def sum_wrong(self, member: [int]) -> int:
|
||||
last_high = 0
|
||||
last_med = 0
|
||||
counter = 0
|
||||
|
||||
for i in range(len(member)):
|
||||
o: Order = self.orders[member[i]]
|
||||
if o.priority == Priority.HIGH :
|
||||
last_high = i
|
||||
elif o.priority == Priority.MEDIUM:
|
||||
last_med = i
|
||||
|
||||
for i in range(last_high):
|
||||
o: Order = self.orders[member[i]]
|
||||
if o.priority == Priority.MEDIUM:
|
||||
counter += self.punish_med
|
||||
elif o.priority == Priority.LOW:
|
||||
counter += self.punish_low
|
||||
|
||||
for i in range(last_med):
|
||||
o: Order = self.orders[member[i]]
|
||||
if o.priority == Priority.LOW:
|
||||
counter += self.punish_low
|
||||
|
||||
return counter
|
||||
|
||||
|
||||
def evaluate(self, member: [int]) -> int:
|
||||
result = 0
|
||||
for i in range(len(self.orders) - 1):
|
||||
x: Order = self.orders[member[i]]
|
||||
y: Order = self.orders[member[i + 1]]
|
||||
# result = 0
|
||||
# for i in range(len(self.orders) - 1):
|
||||
# x: Order = self.orders[member[i]]
|
||||
# y: Order = self.orders[member[i + 1]]
|
||||
#
|
||||
# if ((x.priority == Priority.MEDIUM or x.priority == Priority.LOW) and y.priority == Priority.HIGH) or (x.priority == Priority.LOW and y.priority == Priority.MEDIUM):
|
||||
# result += 30
|
||||
#
|
||||
# if x.sum / x.time < y.sum / y.time:
|
||||
# result += int(y.sum / y.time)
|
||||
|
||||
if ((x.priority == Priority.MEDIUM or x.priority == Priority.LOW) and y.priority == Priority.HIGH) or (x.priority == Priority.LOW and y.priority == Priority.MEDIUM):
|
||||
result += 5000
|
||||
elif x.sum / x.time < y.sum / y.time:
|
||||
result += y.sum * 5 + y.time
|
||||
# return result
|
||||
|
||||
return result
|
||||
return self.sum_wrong(member)
|
||||
|
||||
def mutate_population(self, order_population: [[int]]) -> [[int]]:
|
||||
result = []
|
||||
@ -126,20 +161,16 @@ class GeneticOrder:
|
||||
def get_next_population(self, population: [[int]]) -> [[int]]:
|
||||
result = []
|
||||
|
||||
result = population
|
||||
for i in range(len(population) - self.best_fit_special - self.best_fit_super_special):
|
||||
result.append(population[i])
|
||||
|
||||
# for i in range(len(population) - self.best_fit_special):
|
||||
# result.append(population[i])
|
||||
#
|
||||
# k = len(population) - self.best_fit_special
|
||||
# while k < len(population) - self.best_fit_special_2:
|
||||
# n = random.randint(0, self.best_fit_special)
|
||||
# result.append(population[n])
|
||||
#
|
||||
# left_size = len(population) - k
|
||||
# while left_size < len(population):
|
||||
# n = random.randint(0, self.best_fit_special_2)
|
||||
# result.append(population[n])
|
||||
for i in range(self.best_fit_special):
|
||||
x = random.randint(0, self.best_fit_special)
|
||||
result.append(population[x])
|
||||
|
||||
for i in range(self.best_fit_super_special):
|
||||
x = random.randint(0, self.best_fit_super_special)
|
||||
result.append(population[x])
|
||||
|
||||
return result
|
||||
|
||||
@ -147,7 +178,7 @@ class GeneticOrder:
|
||||
self.orders = orders
|
||||
|
||||
population: [[int]] = self.generate_first_population(self.population_size)
|
||||
print(population)
|
||||
# print(population)
|
||||
|
||||
population.sort(key=self.evaluate)
|
||||
best_fit: [int] = population[0]
|
||||
|
73
main.py
73
main.py
@ -1,3 +1,4 @@
|
||||
import math
|
||||
import random
|
||||
|
||||
from mesa.visualization.ModularVisualization import ModularServer
|
||||
@ -101,42 +102,68 @@ if __name__ == '__main__':
|
||||
"Automatyczny Wózek Widłowy",
|
||||
dict(width=gridHeight, height=gridWidth, graph=diagram, items=50, orders=3, classificator=model))
|
||||
|
||||
def pizda(order: Order):
|
||||
def order_rule(order: Order):
|
||||
return order.id
|
||||
|
||||
def evaluate(member: [Order]) -> int:
|
||||
result = 0
|
||||
for i in range(len(member) - 1):
|
||||
x: Order = member[i]
|
||||
y: Order = member[i + 1]
|
||||
|
||||
if ((x.priority == Priority.MEDIUM or x.priority == Priority.LOW) and y.priority == Priority.HIGH) or (x.priority == Priority.LOW and y.priority == Priority.MEDIUM):
|
||||
result += 5000
|
||||
punish_low = 5
|
||||
punish_med = 3
|
||||
def sum_wrong(member: [Order]) -> int:
|
||||
last_high = 0
|
||||
last_med = 0
|
||||
|
||||
return result
|
||||
sum_high = 0
|
||||
sum_med = 0
|
||||
sum_low = 0
|
||||
|
||||
counter = 0
|
||||
|
||||
for i in range(len(member)):
|
||||
o: Order = member[i]
|
||||
if o.priority == Priority.HIGH :
|
||||
sum_high += 1
|
||||
last_high = i
|
||||
elif o.priority == Priority.MEDIUM:
|
||||
sum_med += 1
|
||||
last_med = i
|
||||
else:
|
||||
sum_low += 1
|
||||
|
||||
for i in range(last_high):
|
||||
o: Order = member[i]
|
||||
if o.priority == Priority.MEDIUM:
|
||||
counter += punish_med
|
||||
elif o.priority == Priority.LOW:
|
||||
counter += punish_low
|
||||
|
||||
for i in range(last_med):
|
||||
o: Order = member[i]
|
||||
if o.priority == Priority.LOW:
|
||||
counter += punish_low
|
||||
|
||||
print("sum: high:", sum_high, "med:", sum_med, "low:", sum_low)
|
||||
print("last_high:", last_high, "last_med:", last_med, "sum:", counter)
|
||||
return counter
|
||||
|
||||
orders = InitialStateFactory.generate_order_list_XD(20)
|
||||
test: GeneticOrder = GeneticOrder(orders)
|
||||
print("SIEMA: ", evaluate(orders))
|
||||
punish_low = test.punish_low
|
||||
punish_med = test.punish_med
|
||||
|
||||
print("SIEMA before: ")
|
||||
sum_wrong(orders)
|
||||
# for i in orders:
|
||||
# print("id: {}, priority: {}", i.id, i.priority)
|
||||
# # print("id:", i.id, "priority:", i.priority, "sum/time:", i.sum/i.time)
|
||||
# print("id:", i.id, "priority:", i.priority)
|
||||
|
||||
newOrders = test.get_orders_sorted(orders)
|
||||
|
||||
print("NAURA:", evaluate(newOrders))
|
||||
print("NAURA after:")
|
||||
sum_wrong(newOrders)
|
||||
# for i in newOrders:
|
||||
# print("id: {}, priority: {}", i.id, i.priority)
|
||||
# # print("id:", i.id, "priority:", i.priority, "sum/time:", i.sum/i.time)
|
||||
# print("id:", i.id, "priority:", i.priority)
|
||||
|
||||
# orders.sort(key=pizda)
|
||||
# newOrders.sort(key=pizda)
|
||||
#
|
||||
# print("SIEMA:")
|
||||
# for i in orders:
|
||||
# print("id: {}, priority: {}", i.id, i.priority)
|
||||
#
|
||||
# print("NAURA:")
|
||||
# for i in newOrders:
|
||||
# print("id: {}, priority: {}", i.id, i.priority)
|
||||
|
||||
|
||||
# server.port = 8888
|
||||
|
Loading…
Reference in New Issue
Block a user