37 lines
1.2 KiB
Python
37 lines
1.2 KiB
Python
|
import pickle
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn.metrics import accuracy_score
|
||
|
|
||
|
np.set_printoptions(threshold=20)
|
||
|
|
||
|
file_path = 'model.pkl'
|
||
|
with open(file_path, 'rb') as file:
|
||
|
model = pickle.load(file)
|
||
|
print("Model został wczytany z pliku:", file_path)
|
||
|
|
||
|
test_df = pd.read_csv("datasets/docker_test_dataset.csv")
|
||
|
|
||
|
Y_test = test_df[['playlist_genre']]
|
||
|
X_test = test_df.drop(columns='playlist_genre')
|
||
|
Y_test = np.ravel(Y_test)
|
||
|
|
||
|
scaler = StandardScaler()
|
||
|
numeric_columns = X_test.select_dtypes(include=['int', 'float']).columns
|
||
|
X_test_scaled = scaler.fit_transform(X_test[numeric_columns])
|
||
|
|
||
|
Y_pred = model.predict(X_test_scaled)
|
||
|
|
||
|
with open('model_predictions.txt', 'w') as f:
|
||
|
pass
|
||
|
|
||
|
with open('model_predictions.txt', 'a') as f:
|
||
|
labels_dict = {0: 'edm', 1 : 'latin', 2 : 'pop', 3 : 'r&b', 4 : 'rap', 5 :'rock'}
|
||
|
Y_test_labels = [labels_dict[number] for number in Y_test]
|
||
|
Y_pred_labels = [labels_dict[number] for number in Y_pred]
|
||
|
f.write("Real:" + str(Y_test_labels[:20])+ " \nPredicted: "+ str(Y_pred_labels[:20]))
|
||
|
accuracy = accuracy_score(Y_test, Y_pred)
|
||
|
f.write("\nAccuracy:" + str(accuracy))
|
||
|
|