ium_464953/.ipynb_checkpoints/use_model-checkpoint.py

77 lines
2.6 KiB
Python
Raw Normal View History

2024-05-09 01:56:58 +02:00
import pickle
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, f1_score, accuracy_score
import sys
import os
import matplotlib.pyplot as plt
def calculate_metrics(result):
rmse = np.sqrt(mean_squared_error(result["Real"], result["Predictions"]))
f1 = f1_score(result["Real"], result["Predictions"], average='macro')
accuracy = accuracy_score(result["Real"], result["Predictions"])
filename = 'metrics_df.csv'
if os.path.exists(filename):
metrics_df = pd.read_csv(filename)
new_row = pd.DataFrame({'Build number': sys.argv[1], 'RMSE': [rmse], 'F1 Score': [f1], 'Accuracy': [accuracy]})
metrics_df = metrics_df.append(new_row, ignore_index=True)
else:
metrics_df = pd.DataFrame({'Build number': sys.argv[1], 'RMSE': [rmse], 'F1 Score': [f1], 'Accuracy': [accuracy]})
metrics_df.to_csv(filename, index=False)
def create_plots():
metrics_df = pd.read_csv("metrics_df.csv")
plt.plot(metrics_df["Build number"], metrics_df["Accuracy"])
plt.xlabel("Build Number")
plt.ylabel("Accuracy")
plt.title("Accuracy of the model over time")
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
plt.show()
plt.savefig("Accuracy_plot.png")
plt.plot(metrics_df["Build number"], metrics_df["F1 Score"])
plt.xlabel("Build Number")
plt.ylabel("F1 Score")
plt.title("F1 Score of the model over time")
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
plt.show()
plt.savefig("F1_score_plot.png")
plt.plot(metrics_df["Build number"], metrics_df["RMSE"])
plt.xlabel("Build Number")
plt.ylabel("RMSE")
plt.title("RMSE of the model over time")
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
plt.show()
plt.savefig("RMSE_plot.png")
np.set_printoptions(threshold=20)
file_path = 'model.pkl'
with open(file_path, 'rb') as file:
model = pickle.load(file)
print("Model został wczytany z pliku:", file_path)
test_df = pd.read_csv("artifacts/docker_test_dataset.csv")
Y_test = test_df[['playlist_genre']]
X_test = test_df.drop(columns='playlist_genre')
Y_test = np.ravel(Y_test)
scaler = StandardScaler()
numeric_columns = X_test.select_dtypes(include=['int', 'float']).columns
X_test_scaled = scaler.fit_transform(X_test[numeric_columns])
Y_pred = model.predict(X_test_scaled)
result = pd.DataFrame({'Predictions': Y_pred, "Real": Y_test})
result.to_csv("spotify_genre_predictions.csv", index=False)
calculate_metrics(result)
create_plots()