ium_464953/MLProject/use_model.py

36 lines
1.4 KiB
Python
Raw Normal View History

2024-05-13 23:32:25 +02:00
import mlflow.sklearn
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
def load_model_and_predict():
with mlflow.start_run():
model = mlflow.sklearn.load_model("model")
test_df = pd.read_csv("docker_test_dataset.csv")
Y_test = test_df[['playlist_genre']]
X_test = test_df.drop(columns='playlist_genre')
Y_test = np.ravel(Y_test)
scaler = StandardScaler()
numeric_columns = X_test.select_dtypes(include=['int', 'float']).columns
X_test_scaled = scaler.fit_transform(X_test[numeric_columns])
Y_pred = model.predict(X_test_scaled)
with open('model_predictions.txt', 'w') as f:
labels_dict = {0: 'edm', 1 : 'latin', 2 : 'pop', 3 : 'r&b', 4 : 'rap', 5 :'rock'}
Y_test_labels = [labels_dict[number] for number in Y_test]
Y_pred_labels = [labels_dict[number] for number in Y_pred]
f.write("Real:" + str(Y_test_labels[:20])+ " \nPredicted: "+ str(Y_pred_labels[:20]))
accuracy = accuracy_score(Y_test, Y_pred)
f.write("\nAccuracy:" + str(accuracy))
mlflow.log_metric("accuracy", accuracy)
mlflow.log_artifact("model_predictions.txt")
mlflow.end_run()
if __name__ == "__main__":
mlflow.set_tracking_uri("http://localhost:5000")
load_model_and_predict()