92 lines
3.5 KiB
Python
92 lines
3.5 KiB
Python
|
import mlflow
|
||
|
import pandas as pd
|
||
|
import os
|
||
|
import numpy as np
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
from sklearn.metrics import accuracy_score
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn. preprocessing import LabelEncoder
|
||
|
import pickle
|
||
|
import sys
|
||
|
|
||
|
|
||
|
|
||
|
def datasets_preparation():
|
||
|
df_1 = pd.read_csv("spotify_songs.csv")
|
||
|
df_2 = pd.read_csv("Spotify_Dataset.csv", sep=";")
|
||
|
|
||
|
df_1 = df_1.dropna()
|
||
|
df_2 = df_2.dropna()
|
||
|
df_2 = df_2.rename(columns={'Title': 'track_name'})
|
||
|
|
||
|
columns_to_remove_df_1 = ['track_id', 'track_album_id', 'track_album_name', 'track_album_release_date',
|
||
|
'playlist_id', 'playlist_subgenre']
|
||
|
columns_to_remove_df_2 = ['Date','# of Artist', 'Artist (Ind.)', '# of Nationality',
|
||
|
'Nationality', 'Continent', 'Points (Total)',
|
||
|
'Points (Ind for each Artist/Nat)', 'id', 'Song URL']
|
||
|
|
||
|
df_1 = df_1.drop(columns=columns_to_remove_df_1)
|
||
|
df_2 = df_2.drop(columns=columns_to_remove_df_2)
|
||
|
df_1 = df_1.drop_duplicates(subset=['track_name'])
|
||
|
df_2 = df_2.drop_duplicates(subset=['track_name'])
|
||
|
|
||
|
le = LabelEncoder()
|
||
|
|
||
|
unique_names_df2 = df_2['track_name'].unique()
|
||
|
diff_df = df_1[~df_1['track_name'].isin(unique_names_df2)]
|
||
|
diff_df = diff_df.iloc[:10000]
|
||
|
|
||
|
diff_df['track_artist'] = le.fit_transform(diff_df.track_artist)
|
||
|
diff_df['playlist_name'] = le.fit_transform(diff_df.playlist_name)
|
||
|
diff_df['playlist_genre'] = le.fit_transform(diff_df.playlist_genre)
|
||
|
|
||
|
if "docker_test_dataset.csv" not in os.listdir():
|
||
|
diff_df.to_csv("docker_test_dataset.csv", index=False)
|
||
|
|
||
|
result_df = pd.merge(df_1, df_2, on='track_name', how='inner')
|
||
|
result_df = result_df.drop_duplicates(subset=['track_name'])
|
||
|
columns_to_remove_result_df = ['Rank', 'Artists', 'Danceability', 'Energy', 'Loudness',
|
||
|
'Speechiness', 'Acousticness', 'Instrumentalness', 'Valence']
|
||
|
result_df = result_df.drop(columns=columns_to_remove_result_df)
|
||
|
|
||
|
result_df['track_artist'] = le.fit_transform(result_df.track_artist)
|
||
|
result_df['playlist_name'] = le.fit_transform(result_df.playlist_name)
|
||
|
result_df['playlist_genre'] = le.fit_transform(result_df.playlist_genre)
|
||
|
|
||
|
return result_df
|
||
|
|
||
|
def train_model_and_log(max_iter):
|
||
|
|
||
|
result_df = datasets_preparation()
|
||
|
Y = result_df[['playlist_genre']]
|
||
|
X = result_df.drop(columns='playlist_genre')
|
||
|
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.10, random_state=42)
|
||
|
Y_train = np.ravel(Y_train)
|
||
|
Y_test = np.ravel(Y_test)
|
||
|
|
||
|
scaler = StandardScaler()
|
||
|
numeric_columns = X_train.select_dtypes(include=['int', 'float']).columns
|
||
|
X_train_scaled = scaler.fit_transform(X_train[numeric_columns])
|
||
|
X_test_scaled = scaler.transform(X_test[numeric_columns])
|
||
|
|
||
|
model = LogisticRegression(max_iter=max_iter)
|
||
|
model.fit(X_train_scaled, Y_train)
|
||
|
|
||
|
Y_pred = model.predict(X_test_scaled)
|
||
|
|
||
|
accuracy = accuracy_score(Y_test, Y_pred)
|
||
|
print("Accuracy:", accuracy)
|
||
|
|
||
|
with mlflow.start_run():
|
||
|
mlflow.log_param("model_type", "LogisticRegression")
|
||
|
mlflow.log_param("test_size", 0.1)
|
||
|
mlflow.log_param("max_iter", max_iter)
|
||
|
mlflow.log_metric("accuracy", accuracy)
|
||
|
mlflow.sklearn.log_model(model, "model")
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
max_iter = int(sys.argv[1]) if len(sys.argv) > 1 else 1000
|
||
|
mlflow.set_tracking_uri("http://localhost:5000")
|
||
|
train_model_and_log(max_iter)
|