added dvc.yaml
This commit is contained in:
parent
f6849deb29
commit
5eb5fb7172
20
dvc.yaml
Normal file
20
dvc.yaml
Normal file
@ -0,0 +1,20 @@
|
||||
stages:
|
||||
train:
|
||||
cmd: python model_creator_dvc.py 0.2 100
|
||||
deps:
|
||||
- model_creator_dvc.py
|
||||
- spotify_songs.csv
|
||||
- Spotify_Dataset.csv
|
||||
outs:
|
||||
- model.pkl
|
||||
- docker_test_dataset.csv
|
||||
|
||||
predict:
|
||||
cmd: python use_model_dvc.py 1
|
||||
deps:
|
||||
- use_model_dvc.py
|
||||
- model.pkl
|
||||
- docker_test_dataset.csv
|
||||
outs:
|
||||
- spotify_genre_predictions.csv
|
||||
- metrics_df.csv
|
98
model_creator_dvc.py
Normal file
98
model_creator_dvc.py
Normal file
@ -0,0 +1,98 @@
|
||||
import pandas as pd
|
||||
import os
|
||||
import numpy as np
|
||||
import shutil
|
||||
import sys
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn. preprocessing import LabelEncoder
|
||||
import pickle
|
||||
|
||||
def datasets_preparation():
|
||||
df_1 = pd.read_csv("spotify_songs.csv")
|
||||
df_2 = pd.read_csv("Spotify_Dataset.csv", sep=";")
|
||||
|
||||
df_1 = df_1.dropna()
|
||||
df_2 = df_2.dropna()
|
||||
df_2 = df_2.rename(columns={'Title': 'track_name'})
|
||||
|
||||
columns_to_remove_df_1 = ['track_id', 'track_album_id', 'track_album_name', 'track_album_release_date',
|
||||
'playlist_id', 'playlist_subgenre']
|
||||
columns_to_remove_df_2 = ['Date','# of Artist', 'Artist (Ind.)', '# of Nationality',
|
||||
'Nationality', 'Continent', 'Points (Total)',
|
||||
'Points (Ind for each Artist/Nat)', 'id', 'Song URL']
|
||||
|
||||
df_1 = df_1.drop(columns=columns_to_remove_df_1)
|
||||
df_2 = df_2.drop(columns=columns_to_remove_df_2)
|
||||
df_1 = df_1.drop_duplicates(subset=['track_name'])
|
||||
df_2 = df_2.drop_duplicates(subset=['track_name'])
|
||||
|
||||
le = LabelEncoder()
|
||||
|
||||
unique_names_df2 = df_2['track_name'].unique()
|
||||
diff_df = df_1[~df_1['track_name'].isin(unique_names_df2)]
|
||||
diff_df = diff_df.iloc[:10000]
|
||||
|
||||
#diff_df = pd.concat([diff_df, df_1.iloc[:20]], ignore_index=True)
|
||||
diff_df['track_artist'] = le.fit_transform(diff_df.track_artist)
|
||||
diff_df['playlist_name'] = le.fit_transform(diff_df.playlist_name)
|
||||
diff_df['playlist_genre'] = le.fit_transform(diff_df.playlist_genre)
|
||||
|
||||
#df_1 = df_1.iloc[20:]
|
||||
|
||||
if "docker_test_dataset.csv" not in os.listdir():
|
||||
diff_df.to_csv("docker_test_dataset.csv", index=False)
|
||||
|
||||
result_df = pd.merge(df_1, df_2, on='track_name', how='inner')
|
||||
result_df = result_df.drop_duplicates(subset=['track_name'])
|
||||
columns_to_remove_result_df = ['Rank', 'Artists', 'Danceability', 'Energy', 'Loudness',
|
||||
'Speechiness', 'Acousticness', 'Instrumentalness', 'Valence']
|
||||
result_df = result_df.drop(columns=columns_to_remove_result_df)
|
||||
|
||||
result_df['track_artist'] = le.fit_transform(result_df.track_artist)
|
||||
result_df['playlist_name'] = le.fit_transform(result_df.playlist_name)
|
||||
result_df['playlist_genre'] = le.fit_transform(result_df.playlist_genre)
|
||||
|
||||
return result_df
|
||||
|
||||
result_df = datasets_preparation()
|
||||
Y = result_df[['playlist_genre']]
|
||||
X = result_df.drop(columns='playlist_genre')
|
||||
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=float(sys.argv[1]), random_state=42)
|
||||
|
||||
|
||||
Y_train = np.ravel(Y_train)
|
||||
Y_test = np.ravel(Y_test)
|
||||
|
||||
scaler = StandardScaler()
|
||||
numeric_columns = X_train.select_dtypes(include=['int', 'float']).columns
|
||||
X_train_scaled = scaler.fit_transform(X_train[numeric_columns])
|
||||
X_test_scaled = scaler.transform(X_test[numeric_columns])
|
||||
|
||||
model = LogisticRegression(max_iter=int(sys.argv[2]))
|
||||
model.fit(X_train_scaled, Y_train)
|
||||
|
||||
|
||||
Y_pred = model.predict(X_test_scaled)
|
||||
|
||||
accuracy = accuracy_score(Y_test, Y_pred)
|
||||
print("Accuracy:", accuracy)
|
||||
|
||||
file_path = 'model.pkl'
|
||||
|
||||
if os.path.exists(file_path):
|
||||
os.remove(file_path)
|
||||
|
||||
if file_path not in os.listdir("./"):
|
||||
with open(file_path, 'wb') as file:
|
||||
pickle.dump(model, file)
|
||||
|
||||
print("Model został zapisany do pliku:", file_path)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
48
use_model_dvc.py
Normal file
48
use_model_dvc.py
Normal file
@ -0,0 +1,48 @@
|
||||
import pickle
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.metrics import mean_squared_error, f1_score, accuracy_score
|
||||
import sys
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def calculate_metrics(result):
|
||||
rmse = np.sqrt(mean_squared_error(result["Real"], result["Predictions"]))
|
||||
f1 = f1_score(result["Real"], result["Predictions"], average='macro')
|
||||
accuracy = accuracy_score(result["Real"], result["Predictions"])
|
||||
|
||||
filename = 'metrics_df.csv'
|
||||
if os.path.exists(filename):
|
||||
metrics_df = pd.read_csv(filename)
|
||||
new_row = pd.DataFrame({'RMSE': [rmse], 'F1 Score': [f1], 'Accuracy': [accuracy]})
|
||||
metrics_df = pd.concat([metrics_df, new_row], ignore_index=True)
|
||||
else:
|
||||
metrics_df = pd.DataFrame({'RMSE': [rmse], 'F1 Score': [f1], 'Accuracy': [accuracy]})
|
||||
|
||||
|
||||
metrics_df.to_csv(filename, index=False)
|
||||
|
||||
np.set_printoptions(threshold=20)
|
||||
|
||||
file_path = 'model.pkl'
|
||||
with open(file_path, 'rb') as file:
|
||||
model = pickle.load(file)
|
||||
print("Model został wczytany z pliku:", file_path)
|
||||
|
||||
test_df = pd.read_csv("docker_test_dataset.csv")
|
||||
|
||||
Y_test = test_df[['playlist_genre']]
|
||||
X_test = test_df.drop(columns='playlist_genre')
|
||||
Y_test = np.ravel(Y_test)
|
||||
|
||||
scaler = StandardScaler()
|
||||
numeric_columns = X_test.select_dtypes(include=['int', 'float']).columns
|
||||
X_test_scaled = scaler.fit_transform(X_test[numeric_columns])
|
||||
|
||||
Y_pred = model.predict(X_test_scaled)
|
||||
|
||||
result = pd.DataFrame({'Predictions': Y_pred, "Real": Y_test})
|
||||
result.to_csv("spotify_genre_predictions.csv", index=False)
|
||||
|
||||
calculate_metrics(result)
|
Loading…
Reference in New Issue
Block a user