Compare commits
11 Commits
master
...
evaluation
Author | SHA1 | Date | |
---|---|---|---|
d2ae1e0b32 | |||
db5d87f034 | |||
79947a5811 | |||
e3b48a0364 | |||
63f9975668 | |||
0886815c28 | |||
a987608675 | |||
fbd021ed51 | |||
a0f4bcf55a | |||
b79467e2bf | |||
1fb8564e19 |
3
.dvc/.gitignore
vendored
3
.dvc/.gitignore
vendored
@ -1,3 +0,0 @@
|
|||||||
/config.local
|
|
||||||
/tmp
|
|
||||||
/cache
|
|
@ -1,4 +0,0 @@
|
|||||||
[core]
|
|
||||||
remote = ium_ssh_remote
|
|
||||||
['remote "ium_ssh_remote"']
|
|
||||||
url = ssh://ium-sftp@tzietkiewicz.vm.wmi.amu.edu.pl
|
|
@ -1,3 +0,0 @@
|
|||||||
# Add patterns of files dvc should ignore, which could improve
|
|
||||||
# the performance. Learn more at
|
|
||||||
# https://dvc.org/doc/user-guide/dvcignore
|
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,2 +0,0 @@
|
|||||||
/Spotify_Dataset.csv
|
|
||||||
/spotify_songs.csv
|
|
17
.ipynb_checkpoints/Dockerfile-checkpoint
Normal file
17
.ipynb_checkpoints/Dockerfile-checkpoint
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
FROM ubuntu:latest
|
||||||
|
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y \
|
||||||
|
python3 \
|
||||||
|
python3-pip \
|
||||||
|
wget \
|
||||||
|
unzip \
|
||||||
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
RUN pip3 install pandas scikit-learn requests numpy
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY use_model.py /app/
|
||||||
|
|
||||||
|
RUN chmod +x use_model.py
|
43
.ipynb_checkpoints/Jenkinsfile-checkpoint
Normal file
43
.ipynb_checkpoints/Jenkinsfile-checkpoint
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
pipeline {
|
||||||
|
agent {
|
||||||
|
dockerfile true
|
||||||
|
}
|
||||||
|
|
||||||
|
triggers {
|
||||||
|
upstream(upstreamProjects: 's464953-training/training', threshold: hudson.model.Result.SUCCESS)
|
||||||
|
}
|
||||||
|
|
||||||
|
parameters {
|
||||||
|
buildSelector(defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR')
|
||||||
|
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'training', name: 'BRANCH', type: 'PT_BRANCH'
|
||||||
|
}
|
||||||
|
|
||||||
|
stages {
|
||||||
|
stage('Clone Repository') {
|
||||||
|
steps {
|
||||||
|
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('Copy Training Artifacts') {
|
||||||
|
steps {
|
||||||
|
copyArtifacts filter: 'artifacts/*', projectName: 's464953-training/' + params.BRANCH, selector: buildParameter('BUILD_SELECTOR')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('Copy Evaluation Artifacts') {
|
||||||
|
steps {
|
||||||
|
copyArtifacts filter: 'metrics_df.csv', projectName: 's464953-training/' + params.BRANCH, selector: buildParameter('BUILD_SELECTOR')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
stage('Run Script') {
|
||||||
|
steps {
|
||||||
|
sh "python3 /app/use_model.py ${currentBuild.number}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('Archive Artifacts') {
|
||||||
|
steps {
|
||||||
|
archiveArtifacts artifacts: '*', onlyIfSuccessful: true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
77
.ipynb_checkpoints/use_model-checkpoint.py
Normal file
77
.ipynb_checkpoints/use_model-checkpoint.py
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
import pickle
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
from sklearn.metrics import mean_squared_error, f1_score, accuracy_score
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
def calculate_metrics(result):
|
||||||
|
rmse = np.sqrt(mean_squared_error(result["Real"], result["Predictions"]))
|
||||||
|
f1 = f1_score(result["Real"], result["Predictions"], average='macro')
|
||||||
|
accuracy = accuracy_score(result["Real"], result["Predictions"])
|
||||||
|
|
||||||
|
filename = 'metrics_df.csv'
|
||||||
|
if os.path.exists(filename):
|
||||||
|
metrics_df = pd.read_csv(filename)
|
||||||
|
new_row = pd.DataFrame({'Build number': sys.argv[1], 'RMSE': [rmse], 'F1 Score': [f1], 'Accuracy': [accuracy]})
|
||||||
|
metrics_df = metrics_df.append(new_row, ignore_index=True)
|
||||||
|
else:
|
||||||
|
metrics_df = pd.DataFrame({'Build number': sys.argv[1], 'RMSE': [rmse], 'F1 Score': [f1], 'Accuracy': [accuracy]})
|
||||||
|
|
||||||
|
|
||||||
|
metrics_df.to_csv(filename, index=False)
|
||||||
|
|
||||||
|
def create_plots():
|
||||||
|
|
||||||
|
metrics_df = pd.read_csv("metrics_df.csv")
|
||||||
|
|
||||||
|
plt.plot(metrics_df["Build number"], metrics_df["Accuracy"])
|
||||||
|
plt.xlabel("Build Number")
|
||||||
|
plt.ylabel("Accuracy")
|
||||||
|
plt.title("Accuracy of the model over time")
|
||||||
|
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
|
||||||
|
plt.show()
|
||||||
|
plt.savefig("Accuracy_plot.png")
|
||||||
|
|
||||||
|
plt.plot(metrics_df["Build number"], metrics_df["F1 Score"])
|
||||||
|
plt.xlabel("Build Number")
|
||||||
|
plt.ylabel("F1 Score")
|
||||||
|
plt.title("F1 Score of the model over time")
|
||||||
|
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
|
||||||
|
plt.show()
|
||||||
|
plt.savefig("F1_score_plot.png")
|
||||||
|
|
||||||
|
plt.plot(metrics_df["Build number"], metrics_df["RMSE"])
|
||||||
|
plt.xlabel("Build Number")
|
||||||
|
plt.ylabel("RMSE")
|
||||||
|
plt.title("RMSE of the model over time")
|
||||||
|
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
|
||||||
|
plt.show()
|
||||||
|
plt.savefig("RMSE_plot.png")
|
||||||
|
|
||||||
|
np.set_printoptions(threshold=20)
|
||||||
|
|
||||||
|
file_path = 'model.pkl'
|
||||||
|
with open(file_path, 'rb') as file:
|
||||||
|
model = pickle.load(file)
|
||||||
|
print("Model został wczytany z pliku:", file_path)
|
||||||
|
|
||||||
|
test_df = pd.read_csv("artifacts/docker_test_dataset.csv")
|
||||||
|
|
||||||
|
Y_test = test_df[['playlist_genre']]
|
||||||
|
X_test = test_df.drop(columns='playlist_genre')
|
||||||
|
Y_test = np.ravel(Y_test)
|
||||||
|
|
||||||
|
scaler = StandardScaler()
|
||||||
|
numeric_columns = X_test.select_dtypes(include=['int', 'float']).columns
|
||||||
|
X_test_scaled = scaler.fit_transform(X_test[numeric_columns])
|
||||||
|
|
||||||
|
Y_pred = model.predict(X_test_scaled)
|
||||||
|
|
||||||
|
result = pd.DataFrame({'Predictions': Y_pred, "Real": Y_test})
|
||||||
|
result.to_csv("spotify_genre_predictions.csv", index=False)
|
||||||
|
|
||||||
|
calculate_metrics(result)
|
||||||
|
create_plots()
|
1271
.ipynb_checkpoints/zad1-checkpoint.ipynb
Normal file
1271
.ipynb_checkpoints/zad1-checkpoint.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
11
Dockerfile
11
Dockerfile
@ -2,11 +2,16 @@ FROM ubuntu:latest
|
|||||||
|
|
||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
apt-get install -y \
|
apt-get install -y \
|
||||||
python3 \
|
python3 \
|
||||||
python3-pip \
|
python3-pip \
|
||||||
git \
|
|
||||||
wget \
|
wget \
|
||||||
unzip \
|
unzip \
|
||||||
&& rm -rf /var/lib/apt/lists/*
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
RUN pip3 install pandas scikit-learn requests kaggle numpy sacred pymongo --break-system-package
|
RUN pip3 install pandas scikit-learn requests numpy matplotlib
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY use_model.py /app/
|
||||||
|
|
||||||
|
RUN chmod +x use_model.py
|
||||||
|
41
Jenkinsfile
vendored
41
Jenkinsfile
vendored
@ -1,10 +1,16 @@
|
|||||||
pipeline {
|
pipeline {
|
||||||
agent any
|
agent {
|
||||||
|
dockerfile true
|
||||||
|
}
|
||||||
|
|
||||||
|
triggers {
|
||||||
|
upstream(upstreamProjects: 's464953-training/training', threshold: hudson.model.Result.SUCCESS)
|
||||||
|
}
|
||||||
|
|
||||||
parameters {
|
parameters {
|
||||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
buildSelector(defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR')
|
||||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'training', name: 'BRANCH', type: 'PT_BRANCH'
|
||||||
}
|
}
|
||||||
|
|
||||||
stages {
|
stages {
|
||||||
stage('Clone Repository') {
|
stage('Clone Repository') {
|
||||||
@ -12,28 +18,25 @@ pipeline {
|
|||||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('Cleanup Artifacts') {
|
stage('Copy Training Artifacts') {
|
||||||
steps {
|
steps {
|
||||||
script {
|
copyArtifacts filter: 'artifacts/*', projectName: 's464953-training/' + params.BRANCH, selector: buildParameter('BUILD_SELECTOR')
|
||||||
sh 'rm -rf artifacts'
|
}
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
stage('Copy Evaluation Artifacts') {
|
||||||
|
steps {
|
||||||
|
copyArtifacts filter: 'metrics_df.csv', projectName: '_s464953-evaluation/evaluation', selector: buildParameter('BUILD_SELECTOR'), optional: true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
stage('Run Script') {
|
stage('Run Script') {
|
||||||
steps {
|
steps {
|
||||||
script {
|
sh "python3 /app/use_model.py ${currentBuild.number}"
|
||||||
withEnv([
|
|
||||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
|
||||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"])
|
|
||||||
{
|
|
||||||
sh "bash ./download_dataset.sh"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('Archive Artifacts') {
|
stage('Archive Artifacts') {
|
||||||
steps {
|
steps {
|
||||||
archiveArtifacts artifacts: 'artifacts/*', onlyIfSuccessful: true
|
archiveArtifacts artifacts: 'metrics_df.csv, spotify_genre_predictions.csv, F1_score_plot.png, RMSE_plot.png, Accuracy_plot.png', onlyIfSuccessful: true
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,57 +0,0 @@
|
|||||||
pipeline {
|
|
||||||
agent any
|
|
||||||
|
|
||||||
parameters {
|
|
||||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
|
||||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
|
||||||
}
|
|
||||||
|
|
||||||
stages {
|
|
||||||
stage('Clone Repository') {
|
|
||||||
steps {
|
|
||||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Stop and remove existing container') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
sh "docker stop s464953 || true"
|
|
||||||
sh "docker rm s464953 || true"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Build Docker image') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
withEnv([
|
|
||||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
|
||||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
|
||||||
]) {
|
|
||||||
sh "docker build --build-arg KAGGLE_USERNAME=$KAGGLE_USERNAME --build-arg KAGGLE_KEY=$KAGGLE_KEY -t s464953 ."
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Run Docker container') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
withEnv([
|
|
||||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
|
||||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
|
||||||
]) {
|
|
||||||
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app s464953"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Archive stats.txt artifact') {
|
|
||||||
steps {
|
|
||||||
archiveArtifacts artifacts: 'stats.txt', allowEmptyArchive: true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,44 +0,0 @@
|
|||||||
pipeline {
|
|
||||||
agent any
|
|
||||||
|
|
||||||
parameters {
|
|
||||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
|
||||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
|
||||||
}
|
|
||||||
|
|
||||||
stages {
|
|
||||||
stage('Clone Repository') {
|
|
||||||
steps {
|
|
||||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Stop and remove existing container') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
sh "docker stop s464953 || true"
|
|
||||||
sh "docker rm s464953 || true"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Run Docker container') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
withEnv([
|
|
||||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
|
||||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
|
||||||
]) {
|
|
||||||
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app michalgulczynski/ium_s464953:1.0"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Archive stats.txt artifact') {
|
|
||||||
steps {
|
|
||||||
archiveArtifacts artifacts: 'stats.txt', allowEmptyArchive: true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,57 +0,0 @@
|
|||||||
pipeline {
|
|
||||||
agent any
|
|
||||||
|
|
||||||
parameters {
|
|
||||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
|
||||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
|
||||||
}
|
|
||||||
|
|
||||||
stages {
|
|
||||||
stage('Clone Repository') {
|
|
||||||
steps {
|
|
||||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Stop and remove existing container') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
sh "docker stop s464953 || true"
|
|
||||||
sh "docker rm s464953 || true"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Build Docker image') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
withEnv([
|
|
||||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
|
||||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
|
||||||
]) {
|
|
||||||
sh "docker build --build-arg KAGGLE_USERNAME=$KAGGLE_USERNAME --build-arg KAGGLE_KEY=$KAGGLE_KEY -t s464953 ."
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Run Docker container') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
withEnv([
|
|
||||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
|
||||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
|
||||||
]) {
|
|
||||||
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app s464953"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Archive stats.txt artifact') {
|
|
||||||
steps {
|
|
||||||
archiveArtifacts artifacts: 'model.pkl', allowEmptyArchive: true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,42 +0,0 @@
|
|||||||
pipeline {
|
|
||||||
agent any
|
|
||||||
|
|
||||||
parameters {
|
|
||||||
buildSelector( defaultSelector: lastSuccessful(), description: 'Build for copying artifacts', name: 'BUILD_SELECTOR')
|
|
||||||
}
|
|
||||||
|
|
||||||
stages {
|
|
||||||
stage('Clone Repository') {
|
|
||||||
steps {
|
|
||||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
stage('Cleanup Artifacts') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
sh 'rm -rf artifacts'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
stage('Copy Artifact') {
|
|
||||||
steps {
|
|
||||||
withEnv([
|
|
||||||
"BUILD_SELECTOR=${params.BUILD_SELECTOR}"
|
|
||||||
]) {
|
|
||||||
copyArtifacts fingerprintArtifacts: true, projectName: 'z-s464953-create-dataset', selector: buildParameter('$BUILD_SELECTOR')}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
stage('Execute Shell Script') {
|
|
||||||
steps {
|
|
||||||
script {
|
|
||||||
sh "bash ./dataset_stats.sh"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
stage('Archive Results') {
|
|
||||||
steps {
|
|
||||||
archiveArtifacts artifacts: 'artifacts/*', onlyIfSuccessful: true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,50 +0,0 @@
|
|||||||
pipeline {
|
|
||||||
agent any
|
|
||||||
|
|
||||||
parameters {
|
|
||||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
|
||||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
|
||||||
}
|
|
||||||
|
|
||||||
stages {
|
|
||||||
stage('Clone Repository') {
|
|
||||||
steps {
|
|
||||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Download datasets') {
|
|
||||||
steps {
|
|
||||||
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}", "KAGGLE_KEY=${params.KAGGLE_KEY}"]) {
|
|
||||||
sh "bash ./download_dataset.sh"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Build and Run Experiments') {
|
|
||||||
agent {
|
|
||||||
dockerfile {
|
|
||||||
reuseNode true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
environment {
|
|
||||||
KAGGLE_USERNAME = "${params.KAGGLE_USERNAME}"
|
|
||||||
KAGGLE_KEY = "${params.KAGGLE_KEY}"
|
|
||||||
}
|
|
||||||
|
|
||||||
steps {
|
|
||||||
sh 'chmod +x sacred/sacred_model_creator.py'
|
|
||||||
sh 'python3 sacred/sacred_model_creator.py'
|
|
||||||
sh 'chmod +x sacred/sacred_use_model.py'
|
|
||||||
sh 'python3 sacred/sacred_use_model.py'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stage('Archive Artifacts from Experiments') {
|
|
||||||
steps {
|
|
||||||
archiveArtifacts artifacts: 'my_experiment_logs/**', allowEmptyArchive: true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,11 +0,0 @@
|
|||||||
name: MLflow Example
|
|
||||||
|
|
||||||
conda_env: conda.yaml
|
|
||||||
|
|
||||||
entry_points:
|
|
||||||
main:
|
|
||||||
command: "python model_creator.py {max_iter}"
|
|
||||||
parameters:
|
|
||||||
max_iter: {type: int, default: 1000}
|
|
||||||
test:
|
|
||||||
command: "python use_model.py"
|
|
File diff suppressed because it is too large
Load Diff
@ -1,11 +0,0 @@
|
|||||||
name: Spotify genre recognition - s464953
|
|
||||||
channels:
|
|
||||||
- defaults
|
|
||||||
dependencies:
|
|
||||||
- python=3.9
|
|
||||||
- pip
|
|
||||||
- pip:
|
|
||||||
- mlflow
|
|
||||||
- pandas
|
|
||||||
- scikit-learn
|
|
||||||
- numpy
|
|
File diff suppressed because it is too large
Load Diff
@ -1,20 +0,0 @@
|
|||||||
artifact_path: model
|
|
||||||
flavors:
|
|
||||||
python_function:
|
|
||||||
env:
|
|
||||||
conda: conda.yaml
|
|
||||||
virtualenv: python_env.yaml
|
|
||||||
loader_module: mlflow.sklearn
|
|
||||||
model_path: model.pkl
|
|
||||||
predict_fn: predict
|
|
||||||
python_version: 3.9.19
|
|
||||||
sklearn:
|
|
||||||
code: null
|
|
||||||
pickled_model: model.pkl
|
|
||||||
serialization_format: cloudpickle
|
|
||||||
sklearn_version: 1.4.2
|
|
||||||
mlflow_version: 2.12.2
|
|
||||||
model_size_bytes: 1446
|
|
||||||
model_uuid: 9026270861774aad82aee9fc231054b4
|
|
||||||
run_id: 04eba1c93f6a4510b4487ad0789fa76f
|
|
||||||
utc_time_created: '2024-05-13 21:25:05.523657'
|
|
@ -1,15 +0,0 @@
|
|||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
dependencies:
|
|
||||||
- python=3.9.19
|
|
||||||
- pip<=24.0
|
|
||||||
- pip:
|
|
||||||
- mlflow==2.12.2
|
|
||||||
- cloudpickle==3.0.0
|
|
||||||
- numpy==1.26.4
|
|
||||||
- packaging==23.1
|
|
||||||
- psutil==5.9.5
|
|
||||||
- pyyaml==6.0.1
|
|
||||||
- scikit-learn==1.4.2
|
|
||||||
- scipy==1.13.0
|
|
||||||
name: mlflow-env
|
|
@ -1,20 +0,0 @@
|
|||||||
artifact_path: model
|
|
||||||
flavors:
|
|
||||||
python_function:
|
|
||||||
env:
|
|
||||||
conda: conda.yaml
|
|
||||||
virtualenv: python_env.yaml
|
|
||||||
loader_module: mlflow.sklearn
|
|
||||||
model_path: model.pkl
|
|
||||||
predict_fn: predict
|
|
||||||
python_version: 3.9.19
|
|
||||||
sklearn:
|
|
||||||
code: null
|
|
||||||
pickled_model: model.pkl
|
|
||||||
serialization_format: cloudpickle
|
|
||||||
sklearn_version: 1.4.2
|
|
||||||
mlflow_version: 2.12.2
|
|
||||||
model_size_bytes: 1446
|
|
||||||
model_uuid: 9026270861774aad82aee9fc231054b4
|
|
||||||
run_id: 04eba1c93f6a4510b4487ad0789fa76f
|
|
||||||
utc_time_created: '2024-05-13 21:25:05.523657'
|
|
@ -1,15 +0,0 @@
|
|||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
dependencies:
|
|
||||||
- python=3.9.19
|
|
||||||
- pip<=24.0
|
|
||||||
- pip:
|
|
||||||
- mlflow==2.12.2
|
|
||||||
- cloudpickle==3.0.0
|
|
||||||
- numpy==1.26.4
|
|
||||||
- packaging==23.1
|
|
||||||
- psutil==5.9.5
|
|
||||||
- pyyaml==6.0.1
|
|
||||||
- scikit-learn==1.4.2
|
|
||||||
- scipy==1.13.0
|
|
||||||
name: mlflow-env
|
|
@ -1,7 +0,0 @@
|
|||||||
python: 3.9.19
|
|
||||||
build_dependencies:
|
|
||||||
- pip==24.0
|
|
||||||
- setuptools
|
|
||||||
- wheel==0.43.0
|
|
||||||
dependencies:
|
|
||||||
- -r requirements.txt
|
|
@ -1,8 +0,0 @@
|
|||||||
mlflow==2.12.2
|
|
||||||
cloudpickle==3.0.0
|
|
||||||
numpy==1.26.4
|
|
||||||
packaging==23.1
|
|
||||||
psutil==5.9.5
|
|
||||||
pyyaml==6.0.1
|
|
||||||
scikit-learn==1.4.2
|
|
||||||
scipy==1.13.0
|
|
Binary file not shown.
@ -1,7 +0,0 @@
|
|||||||
python: 3.9.19
|
|
||||||
build_dependencies:
|
|
||||||
- pip==24.0
|
|
||||||
- setuptools
|
|
||||||
- wheel==0.43.0
|
|
||||||
dependencies:
|
|
||||||
- -r requirements.txt
|
|
@ -1,8 +0,0 @@
|
|||||||
mlflow==2.12.2
|
|
||||||
cloudpickle==3.0.0
|
|
||||||
numpy==1.26.4
|
|
||||||
packaging==23.1
|
|
||||||
psutil==5.9.5
|
|
||||||
pyyaml==6.0.1
|
|
||||||
scikit-learn==1.4.2
|
|
||||||
scipy==1.13.0
|
|
@ -1,15 +0,0 @@
|
|||||||
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/04eba1c93f6a4510b4487ad0789fa76f/artifacts
|
|
||||||
end_time: 1715635510283
|
|
||||||
entry_point_name: ''
|
|
||||||
experiment_id: '0'
|
|
||||||
lifecycle_stage: active
|
|
||||||
run_id: 04eba1c93f6a4510b4487ad0789fa76f
|
|
||||||
run_name: valuable-goat-689
|
|
||||||
run_uuid: 04eba1c93f6a4510b4487ad0789fa76f
|
|
||||||
source_name: ''
|
|
||||||
source_type: 4
|
|
||||||
source_version: ''
|
|
||||||
start_time: 1715635487472
|
|
||||||
status: 3
|
|
||||||
tags: []
|
|
||||||
user_id: Michał
|
|
@ -1 +0,0 @@
|
|||||||
1715635505497 0.4782608695652174 0
|
|
@ -1 +0,0 @@
|
|||||||
1000
|
|
@ -1 +0,0 @@
|
|||||||
LogisticRegression
|
|
@ -1 +0,0 @@
|
|||||||
0.1
|
|
@ -1 +0,0 @@
|
|||||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
|
@ -1 +0,0 @@
|
|||||||
[{"run_id": "04eba1c93f6a4510b4487ad0789fa76f", "artifact_path": "model", "utc_time_created": "2024-05-13 21:25:05.523657", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "9026270861774aad82aee9fc231054b4", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]
|
|
@ -1 +0,0 @@
|
|||||||
local
|
|
@ -1 +0,0 @@
|
|||||||
main
|
|
@ -1 +0,0 @@
|
|||||||
conda
|
|
@ -1 +0,0 @@
|
|||||||
valuable-goat-689
|
|
@ -1 +0,0 @@
|
|||||||
390d6b118b45f3613f049b5cf665ff66ca00cbd5
|
|
@ -1 +0,0 @@
|
|||||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
|
@ -1 +0,0 @@
|
|||||||
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject
|
|
@ -1 +0,0 @@
|
|||||||
PROJECT
|
|
@ -1 +0,0 @@
|
|||||||
Michał
|
|
@ -1,20 +0,0 @@
|
|||||||
artifact_path: model
|
|
||||||
flavors:
|
|
||||||
python_function:
|
|
||||||
env:
|
|
||||||
conda: conda.yaml
|
|
||||||
virtualenv: python_env.yaml
|
|
||||||
loader_module: mlflow.sklearn
|
|
||||||
model_path: model.pkl
|
|
||||||
predict_fn: predict
|
|
||||||
python_version: 3.9.19
|
|
||||||
sklearn:
|
|
||||||
code: null
|
|
||||||
pickled_model: model.pkl
|
|
||||||
serialization_format: cloudpickle
|
|
||||||
sklearn_version: 1.4.2
|
|
||||||
mlflow_version: 2.12.2
|
|
||||||
model_size_bytes: 1446
|
|
||||||
model_uuid: b733a1b574ba4815ac1f2887d47fe45c
|
|
||||||
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
|
|
||||||
utc_time_created: '2024-05-13 21:21:21.420484'
|
|
@ -1,15 +0,0 @@
|
|||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
dependencies:
|
|
||||||
- python=3.9.19
|
|
||||||
- pip<=24.0
|
|
||||||
- pip:
|
|
||||||
- mlflow==2.12.2
|
|
||||||
- cloudpickle==3.0.0
|
|
||||||
- numpy==1.26.4
|
|
||||||
- packaging==23.1
|
|
||||||
- psutil==5.9.5
|
|
||||||
- pyyaml==6.0.1
|
|
||||||
- scikit-learn==1.4.2
|
|
||||||
- scipy==1.13.0
|
|
||||||
name: mlflow-env
|
|
@ -1,20 +0,0 @@
|
|||||||
artifact_path: model
|
|
||||||
flavors:
|
|
||||||
python_function:
|
|
||||||
env:
|
|
||||||
conda: conda.yaml
|
|
||||||
virtualenv: python_env.yaml
|
|
||||||
loader_module: mlflow.sklearn
|
|
||||||
model_path: model.pkl
|
|
||||||
predict_fn: predict
|
|
||||||
python_version: 3.9.19
|
|
||||||
sklearn:
|
|
||||||
code: null
|
|
||||||
pickled_model: model.pkl
|
|
||||||
serialization_format: cloudpickle
|
|
||||||
sklearn_version: 1.4.2
|
|
||||||
mlflow_version: 2.12.2
|
|
||||||
model_size_bytes: 1446
|
|
||||||
model_uuid: b733a1b574ba4815ac1f2887d47fe45c
|
|
||||||
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
|
|
||||||
utc_time_created: '2024-05-13 21:21:21.420484'
|
|
@ -1,15 +0,0 @@
|
|||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
dependencies:
|
|
||||||
- python=3.9.19
|
|
||||||
- pip<=24.0
|
|
||||||
- pip:
|
|
||||||
- mlflow==2.12.2
|
|
||||||
- cloudpickle==3.0.0
|
|
||||||
- numpy==1.26.4
|
|
||||||
- packaging==23.1
|
|
||||||
- psutil==5.9.5
|
|
||||||
- pyyaml==6.0.1
|
|
||||||
- scikit-learn==1.4.2
|
|
||||||
- scipy==1.13.0
|
|
||||||
name: mlflow-env
|
|
@ -1,7 +0,0 @@
|
|||||||
python: 3.9.19
|
|
||||||
build_dependencies:
|
|
||||||
- pip==24.0
|
|
||||||
- setuptools
|
|
||||||
- wheel==0.43.0
|
|
||||||
dependencies:
|
|
||||||
- -r requirements.txt
|
|
@ -1,8 +0,0 @@
|
|||||||
mlflow==2.12.2
|
|
||||||
cloudpickle==3.0.0
|
|
||||||
numpy==1.26.4
|
|
||||||
packaging==23.1
|
|
||||||
psutil==5.9.5
|
|
||||||
pyyaml==6.0.1
|
|
||||||
scikit-learn==1.4.2
|
|
||||||
scipy==1.13.0
|
|
Binary file not shown.
@ -1,7 +0,0 @@
|
|||||||
python: 3.9.19
|
|
||||||
build_dependencies:
|
|
||||||
- pip==24.0
|
|
||||||
- setuptools
|
|
||||||
- wheel==0.43.0
|
|
||||||
dependencies:
|
|
||||||
- -r requirements.txt
|
|
@ -1,8 +0,0 @@
|
|||||||
mlflow==2.12.2
|
|
||||||
cloudpickle==3.0.0
|
|
||||||
numpy==1.26.4
|
|
||||||
packaging==23.1
|
|
||||||
psutil==5.9.5
|
|
||||||
pyyaml==6.0.1
|
|
||||||
scikit-learn==1.4.2
|
|
||||||
scipy==1.13.0
|
|
@ -1,15 +0,0 @@
|
|||||||
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/2e98f71c04cd4e21a26b13ae9daaf43b/artifacts
|
|
||||||
end_time: 1715635286846
|
|
||||||
entry_point_name: ''
|
|
||||||
experiment_id: '0'
|
|
||||||
lifecycle_stage: active
|
|
||||||
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
|
|
||||||
run_name: illustrious-shark-67
|
|
||||||
run_uuid: 2e98f71c04cd4e21a26b13ae9daaf43b
|
|
||||||
source_name: ''
|
|
||||||
source_type: 4
|
|
||||||
source_version: ''
|
|
||||||
start_time: 1715635260477
|
|
||||||
status: 3
|
|
||||||
tags: []
|
|
||||||
user_id: Michał
|
|
@ -1 +0,0 @@
|
|||||||
1715635281395 0.4782608695652174 0
|
|
@ -1 +0,0 @@
|
|||||||
1000
|
|
@ -1 +0,0 @@
|
|||||||
LogisticRegression
|
|
@ -1 +0,0 @@
|
|||||||
0.1
|
|
@ -1 +0,0 @@
|
|||||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
|
@ -1 +0,0 @@
|
|||||||
[{"run_id": "2e98f71c04cd4e21a26b13ae9daaf43b", "artifact_path": "model", "utc_time_created": "2024-05-13 21:21:21.420484", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "b733a1b574ba4815ac1f2887d47fe45c", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]
|
|
@ -1 +0,0 @@
|
|||||||
local
|
|
@ -1 +0,0 @@
|
|||||||
main
|
|
@ -1 +0,0 @@
|
|||||||
conda
|
|
@ -1 +0,0 @@
|
|||||||
illustrious-shark-67
|
|
@ -1 +0,0 @@
|
|||||||
390d6b118b45f3613f049b5cf665ff66ca00cbd5
|
|
@ -1 +0,0 @@
|
|||||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
|
@ -1 +0,0 @@
|
|||||||
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject
|
|
@ -1 +0,0 @@
|
|||||||
PROJECT
|
|
@ -1 +0,0 @@
|
|||||||
Michał
|
|
@ -1,20 +0,0 @@
|
|||||||
artifact_path: model
|
|
||||||
flavors:
|
|
||||||
python_function:
|
|
||||||
env:
|
|
||||||
conda: conda.yaml
|
|
||||||
virtualenv: python_env.yaml
|
|
||||||
loader_module: mlflow.sklearn
|
|
||||||
model_path: model.pkl
|
|
||||||
predict_fn: predict
|
|
||||||
python_version: 3.9.19
|
|
||||||
sklearn:
|
|
||||||
code: null
|
|
||||||
pickled_model: model.pkl
|
|
||||||
serialization_format: cloudpickle
|
|
||||||
sklearn_version: 1.4.2
|
|
||||||
mlflow_version: 2.12.2
|
|
||||||
model_size_bytes: 1446
|
|
||||||
model_uuid: 89ad4cf7b9e7444ea84049ba5d88fdb8
|
|
||||||
run_id: 71242ca0b6f446d89f411c36212b6761
|
|
||||||
utc_time_created: '2024-05-13 20:57:47.221852'
|
|
@ -1,15 +0,0 @@
|
|||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
dependencies:
|
|
||||||
- python=3.9.19
|
|
||||||
- pip<=24.0
|
|
||||||
- pip:
|
|
||||||
- mlflow==2.12.2
|
|
||||||
- cloudpickle==3.0.0
|
|
||||||
- numpy==1.26.4
|
|
||||||
- packaging==23.1
|
|
||||||
- psutil==5.9.5
|
|
||||||
- pyyaml==6.0.1
|
|
||||||
- scikit-learn==1.4.2
|
|
||||||
- scipy==1.13.0
|
|
||||||
name: mlflow-env
|
|
@ -1,20 +0,0 @@
|
|||||||
artifact_path: model
|
|
||||||
flavors:
|
|
||||||
python_function:
|
|
||||||
env:
|
|
||||||
conda: conda.yaml
|
|
||||||
virtualenv: python_env.yaml
|
|
||||||
loader_module: mlflow.sklearn
|
|
||||||
model_path: model.pkl
|
|
||||||
predict_fn: predict
|
|
||||||
python_version: 3.9.19
|
|
||||||
sklearn:
|
|
||||||
code: null
|
|
||||||
pickled_model: model.pkl
|
|
||||||
serialization_format: cloudpickle
|
|
||||||
sklearn_version: 1.4.2
|
|
||||||
mlflow_version: 2.12.2
|
|
||||||
model_size_bytes: 1446
|
|
||||||
model_uuid: 89ad4cf7b9e7444ea84049ba5d88fdb8
|
|
||||||
run_id: 71242ca0b6f446d89f411c36212b6761
|
|
||||||
utc_time_created: '2024-05-13 20:57:47.221852'
|
|
@ -1,15 +0,0 @@
|
|||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
dependencies:
|
|
||||||
- python=3.9.19
|
|
||||||
- pip<=24.0
|
|
||||||
- pip:
|
|
||||||
- mlflow==2.12.2
|
|
||||||
- cloudpickle==3.0.0
|
|
||||||
- numpy==1.26.4
|
|
||||||
- packaging==23.1
|
|
||||||
- psutil==5.9.5
|
|
||||||
- pyyaml==6.0.1
|
|
||||||
- scikit-learn==1.4.2
|
|
||||||
- scipy==1.13.0
|
|
||||||
name: mlflow-env
|
|
@ -1,7 +0,0 @@
|
|||||||
python: 3.9.19
|
|
||||||
build_dependencies:
|
|
||||||
- pip==24.0
|
|
||||||
- setuptools
|
|
||||||
- wheel==0.43.0
|
|
||||||
dependencies:
|
|
||||||
- -r requirements.txt
|
|
@ -1,8 +0,0 @@
|
|||||||
mlflow==2.12.2
|
|
||||||
cloudpickle==3.0.0
|
|
||||||
numpy==1.26.4
|
|
||||||
packaging==23.1
|
|
||||||
psutil==5.9.5
|
|
||||||
pyyaml==6.0.1
|
|
||||||
scikit-learn==1.4.2
|
|
||||||
scipy==1.13.0
|
|
Binary file not shown.
@ -1,7 +0,0 @@
|
|||||||
python: 3.9.19
|
|
||||||
build_dependencies:
|
|
||||||
- pip==24.0
|
|
||||||
- setuptools
|
|
||||||
- wheel==0.43.0
|
|
||||||
dependencies:
|
|
||||||
- -r requirements.txt
|
|
@ -1,8 +0,0 @@
|
|||||||
mlflow==2.12.2
|
|
||||||
cloudpickle==3.0.0
|
|
||||||
numpy==1.26.4
|
|
||||||
packaging==23.1
|
|
||||||
psutil==5.9.5
|
|
||||||
pyyaml==6.0.1
|
|
||||||
scikit-learn==1.4.2
|
|
||||||
scipy==1.13.0
|
|
@ -1,15 +0,0 @@
|
|||||||
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/71242ca0b6f446d89f411c36212b6761/artifacts
|
|
||||||
end_time: 1715633872371
|
|
||||||
entry_point_name: ''
|
|
||||||
experiment_id: '0'
|
|
||||||
lifecycle_stage: active
|
|
||||||
run_id: 71242ca0b6f446d89f411c36212b6761
|
|
||||||
run_name: industrious-gull-774
|
|
||||||
run_uuid: 71242ca0b6f446d89f411c36212b6761
|
|
||||||
source_name: ''
|
|
||||||
source_type: 4
|
|
||||||
source_version: ''
|
|
||||||
start_time: 1715633850262
|
|
||||||
status: 3
|
|
||||||
tags: []
|
|
||||||
user_id: Michał
|
|
@ -1 +0,0 @@
|
|||||||
1715633867196 0.4782608695652174 0
|
|
@ -1 +0,0 @@
|
|||||||
1000
|
|
@ -1 +0,0 @@
|
|||||||
LogisticRegression
|
|
@ -1 +0,0 @@
|
|||||||
0.1
|
|
@ -1 +0,0 @@
|
|||||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
|
@ -1 +0,0 @@
|
|||||||
[{"run_id": "71242ca0b6f446d89f411c36212b6761", "artifact_path": "model", "utc_time_created": "2024-05-13 20:57:47.221852", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "89ad4cf7b9e7444ea84049ba5d88fdb8", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]
|
|
@ -1 +0,0 @@
|
|||||||
local
|
|
@ -1 +0,0 @@
|
|||||||
main
|
|
@ -1 +0,0 @@
|
|||||||
conda
|
|
@ -1 +0,0 @@
|
|||||||
industrious-gull-774
|
|
@ -1 +0,0 @@
|
|||||||
390d6b118b45f3613f049b5cf665ff66ca00cbd5
|
|
@ -1 +0,0 @@
|
|||||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
|
@ -1 +0,0 @@
|
|||||||
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject
|
|
@ -1 +0,0 @@
|
|||||||
PROJECT
|
|
@ -1 +0,0 @@
|
|||||||
Michał
|
|
@ -1,20 +0,0 @@
|
|||||||
artifact_path: model
|
|
||||||
flavors:
|
|
||||||
python_function:
|
|
||||||
env:
|
|
||||||
conda: conda.yaml
|
|
||||||
virtualenv: python_env.yaml
|
|
||||||
loader_module: mlflow.sklearn
|
|
||||||
model_path: model.pkl
|
|
||||||
predict_fn: predict
|
|
||||||
python_version: 3.9.19
|
|
||||||
sklearn:
|
|
||||||
code: null
|
|
||||||
pickled_model: model.pkl
|
|
||||||
serialization_format: cloudpickle
|
|
||||||
sklearn_version: 1.4.2
|
|
||||||
mlflow_version: 2.12.2
|
|
||||||
model_size_bytes: 1446
|
|
||||||
model_uuid: c575ab1b63c840b1b87f2c5d6a51721c
|
|
||||||
run_id: ef10e2199a2346dabe10eb9e7bdea061
|
|
||||||
utc_time_created: '2024-05-13 20:51:58.533911'
|
|
@ -1,15 +0,0 @@
|
|||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
dependencies:
|
|
||||||
- python=3.9.19
|
|
||||||
- pip<=24.0
|
|
||||||
- pip:
|
|
||||||
- mlflow==2.12.2
|
|
||||||
- cloudpickle==3.0.0
|
|
||||||
- numpy==1.26.4
|
|
||||||
- packaging==23.1
|
|
||||||
- psutil==5.9.5
|
|
||||||
- pyyaml==6.0.1
|
|
||||||
- scikit-learn==1.4.2
|
|
||||||
- scipy==1.13.0
|
|
||||||
name: mlflow-env
|
|
@ -1,20 +0,0 @@
|
|||||||
artifact_path: model
|
|
||||||
flavors:
|
|
||||||
python_function:
|
|
||||||
env:
|
|
||||||
conda: conda.yaml
|
|
||||||
virtualenv: python_env.yaml
|
|
||||||
loader_module: mlflow.sklearn
|
|
||||||
model_path: model.pkl
|
|
||||||
predict_fn: predict
|
|
||||||
python_version: 3.9.19
|
|
||||||
sklearn:
|
|
||||||
code: null
|
|
||||||
pickled_model: model.pkl
|
|
||||||
serialization_format: cloudpickle
|
|
||||||
sklearn_version: 1.4.2
|
|
||||||
mlflow_version: 2.12.2
|
|
||||||
model_size_bytes: 1446
|
|
||||||
model_uuid: c575ab1b63c840b1b87f2c5d6a51721c
|
|
||||||
run_id: ef10e2199a2346dabe10eb9e7bdea061
|
|
||||||
utc_time_created: '2024-05-13 20:51:58.533911'
|
|
@ -1,15 +0,0 @@
|
|||||||
channels:
|
|
||||||
- conda-forge
|
|
||||||
dependencies:
|
|
||||||
- python=3.9.19
|
|
||||||
- pip<=24.0
|
|
||||||
- pip:
|
|
||||||
- mlflow==2.12.2
|
|
||||||
- cloudpickle==3.0.0
|
|
||||||
- numpy==1.26.4
|
|
||||||
- packaging==23.1
|
|
||||||
- psutil==5.9.5
|
|
||||||
- pyyaml==6.0.1
|
|
||||||
- scikit-learn==1.4.2
|
|
||||||
- scipy==1.13.0
|
|
||||||
name: mlflow-env
|
|
@ -1,7 +0,0 @@
|
|||||||
python: 3.9.19
|
|
||||||
build_dependencies:
|
|
||||||
- pip==24.0
|
|
||||||
- setuptools
|
|
||||||
- wheel==0.43.0
|
|
||||||
dependencies:
|
|
||||||
- -r requirements.txt
|
|
@ -1,8 +0,0 @@
|
|||||||
mlflow==2.12.2
|
|
||||||
cloudpickle==3.0.0
|
|
||||||
numpy==1.26.4
|
|
||||||
packaging==23.1
|
|
||||||
psutil==5.9.5
|
|
||||||
pyyaml==6.0.1
|
|
||||||
scikit-learn==1.4.2
|
|
||||||
scipy==1.13.0
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user