Compare commits
11 Commits
master
...
evaluation
Author | SHA1 | Date | |
---|---|---|---|
d2ae1e0b32 | |||
db5d87f034 | |||
79947a5811 | |||
e3b48a0364 | |||
63f9975668 | |||
0886815c28 | |||
a987608675 | |||
fbd021ed51 | |||
a0f4bcf55a | |||
b79467e2bf | |||
1fb8564e19 |
3
.dvc/.gitignore
vendored
3
.dvc/.gitignore
vendored
@ -1,3 +0,0 @@
|
||||
/config.local
|
||||
/tmp
|
||||
/cache
|
@ -1,4 +0,0 @@
|
||||
[core]
|
||||
remote = ium_ssh_remote
|
||||
['remote "ium_ssh_remote"']
|
||||
url = ssh://ium-sftp@tzietkiewicz.vm.wmi.amu.edu.pl
|
@ -1,3 +0,0 @@
|
||||
# Add patterns of files dvc should ignore, which could improve
|
||||
# the performance. Learn more at
|
||||
# https://dvc.org/doc/user-guide/dvcignore
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,2 +0,0 @@
|
||||
/Spotify_Dataset.csv
|
||||
/spotify_songs.csv
|
17
.ipynb_checkpoints/Dockerfile-checkpoint
Normal file
17
.ipynb_checkpoints/Dockerfile-checkpoint
Normal file
@ -0,0 +1,17 @@
|
||||
FROM ubuntu:latest
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
python3 \
|
||||
python3-pip \
|
||||
wget \
|
||||
unzip \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN pip3 install pandas scikit-learn requests numpy
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY use_model.py /app/
|
||||
|
||||
RUN chmod +x use_model.py
|
43
.ipynb_checkpoints/Jenkinsfile-checkpoint
Normal file
43
.ipynb_checkpoints/Jenkinsfile-checkpoint
Normal file
@ -0,0 +1,43 @@
|
||||
pipeline {
|
||||
agent {
|
||||
dockerfile true
|
||||
}
|
||||
|
||||
triggers {
|
||||
upstream(upstreamProjects: 's464953-training/training', threshold: hudson.model.Result.SUCCESS)
|
||||
}
|
||||
|
||||
parameters {
|
||||
buildSelector(defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR')
|
||||
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'training', name: 'BRANCH', type: 'PT_BRANCH'
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Clone Repository') {
|
||||
steps {
|
||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||
}
|
||||
}
|
||||
stage('Copy Training Artifacts') {
|
||||
steps {
|
||||
copyArtifacts filter: 'artifacts/*', projectName: 's464953-training/' + params.BRANCH, selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
stage('Copy Evaluation Artifacts') {
|
||||
steps {
|
||||
copyArtifacts filter: 'metrics_df.csv', projectName: 's464953-training/' + params.BRANCH, selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run Script') {
|
||||
steps {
|
||||
sh "python3 /app/use_model.py ${currentBuild.number}"
|
||||
}
|
||||
}
|
||||
stage('Archive Artifacts') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: '*', onlyIfSuccessful: true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
77
.ipynb_checkpoints/use_model-checkpoint.py
Normal file
77
.ipynb_checkpoints/use_model-checkpoint.py
Normal file
@ -0,0 +1,77 @@
|
||||
import pickle
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.metrics import mean_squared_error, f1_score, accuracy_score
|
||||
import sys
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def calculate_metrics(result):
|
||||
rmse = np.sqrt(mean_squared_error(result["Real"], result["Predictions"]))
|
||||
f1 = f1_score(result["Real"], result["Predictions"], average='macro')
|
||||
accuracy = accuracy_score(result["Real"], result["Predictions"])
|
||||
|
||||
filename = 'metrics_df.csv'
|
||||
if os.path.exists(filename):
|
||||
metrics_df = pd.read_csv(filename)
|
||||
new_row = pd.DataFrame({'Build number': sys.argv[1], 'RMSE': [rmse], 'F1 Score': [f1], 'Accuracy': [accuracy]})
|
||||
metrics_df = metrics_df.append(new_row, ignore_index=True)
|
||||
else:
|
||||
metrics_df = pd.DataFrame({'Build number': sys.argv[1], 'RMSE': [rmse], 'F1 Score': [f1], 'Accuracy': [accuracy]})
|
||||
|
||||
|
||||
metrics_df.to_csv(filename, index=False)
|
||||
|
||||
def create_plots():
|
||||
|
||||
metrics_df = pd.read_csv("metrics_df.csv")
|
||||
|
||||
plt.plot(metrics_df["Build number"], metrics_df["Accuracy"])
|
||||
plt.xlabel("Build Number")
|
||||
plt.ylabel("Accuracy")
|
||||
plt.title("Accuracy of the model over time")
|
||||
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
|
||||
plt.show()
|
||||
plt.savefig("Accuracy_plot.png")
|
||||
|
||||
plt.plot(metrics_df["Build number"], metrics_df["F1 Score"])
|
||||
plt.xlabel("Build Number")
|
||||
plt.ylabel("F1 Score")
|
||||
plt.title("F1 Score of the model over time")
|
||||
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
|
||||
plt.show()
|
||||
plt.savefig("F1_score_plot.png")
|
||||
|
||||
plt.plot(metrics_df["Build number"], metrics_df["RMSE"])
|
||||
plt.xlabel("Build Number")
|
||||
plt.ylabel("RMSE")
|
||||
plt.title("RMSE of the model over time")
|
||||
plt.xticks(range(min(metrics_df["Build number"]), max(metrics_df["Build number"]) + 1))
|
||||
plt.show()
|
||||
plt.savefig("RMSE_plot.png")
|
||||
|
||||
np.set_printoptions(threshold=20)
|
||||
|
||||
file_path = 'model.pkl'
|
||||
with open(file_path, 'rb') as file:
|
||||
model = pickle.load(file)
|
||||
print("Model został wczytany z pliku:", file_path)
|
||||
|
||||
test_df = pd.read_csv("artifacts/docker_test_dataset.csv")
|
||||
|
||||
Y_test = test_df[['playlist_genre']]
|
||||
X_test = test_df.drop(columns='playlist_genre')
|
||||
Y_test = np.ravel(Y_test)
|
||||
|
||||
scaler = StandardScaler()
|
||||
numeric_columns = X_test.select_dtypes(include=['int', 'float']).columns
|
||||
X_test_scaled = scaler.fit_transform(X_test[numeric_columns])
|
||||
|
||||
Y_pred = model.predict(X_test_scaled)
|
||||
|
||||
result = pd.DataFrame({'Predictions': Y_pred, "Real": Y_test})
|
||||
result.to_csv("spotify_genre_predictions.csv", index=False)
|
||||
|
||||
calculate_metrics(result)
|
||||
create_plots()
|
1271
.ipynb_checkpoints/zad1-checkpoint.ipynb
Normal file
1271
.ipynb_checkpoints/zad1-checkpoint.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
@ -4,9 +4,14 @@ RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
python3 \
|
||||
python3-pip \
|
||||
git \
|
||||
wget \
|
||||
unzip \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN pip3 install pandas scikit-learn requests kaggle numpy sacred pymongo --break-system-package
|
||||
RUN pip3 install pandas scikit-learn requests numpy matplotlib
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY use_model.py /app/
|
||||
|
||||
RUN chmod +x use_model.py
|
||||
|
33
Jenkinsfile
vendored
33
Jenkinsfile
vendored
@ -1,9 +1,15 @@
|
||||
pipeline {
|
||||
agent any
|
||||
agent {
|
||||
dockerfile true
|
||||
}
|
||||
|
||||
triggers {
|
||||
upstream(upstreamProjects: 's464953-training/training', threshold: hudson.model.Result.SUCCESS)
|
||||
}
|
||||
|
||||
parameters {
|
||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
||||
buildSelector(defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR')
|
||||
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'training', name: 'BRANCH', type: 'PT_BRANCH'
|
||||
}
|
||||
|
||||
stages {
|
||||
@ -12,28 +18,25 @@ pipeline {
|
||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||
}
|
||||
}
|
||||
stage('Cleanup Artifacts') {
|
||||
stage('Copy Training Artifacts') {
|
||||
steps {
|
||||
script {
|
||||
sh 'rm -rf artifacts'
|
||||
copyArtifacts filter: 'artifacts/*', projectName: 's464953-training/' + params.BRANCH, selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
stage('Copy Evaluation Artifacts') {
|
||||
steps {
|
||||
copyArtifacts filter: 'metrics_df.csv', projectName: '_s464953-evaluation/evaluation', selector: buildParameter('BUILD_SELECTOR'), optional: true
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run Script') {
|
||||
steps {
|
||||
script {
|
||||
withEnv([
|
||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"])
|
||||
{
|
||||
sh "bash ./download_dataset.sh"
|
||||
}
|
||||
}
|
||||
sh "python3 /app/use_model.py ${currentBuild.number}"
|
||||
}
|
||||
}
|
||||
stage('Archive Artifacts') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'artifacts/*', onlyIfSuccessful: true
|
||||
archiveArtifacts artifacts: 'metrics_df.csv, spotify_genre_predictions.csv, F1_score_plot.png, RMSE_plot.png, Accuracy_plot.png', onlyIfSuccessful: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,57 +0,0 @@
|
||||
pipeline {
|
||||
agent any
|
||||
|
||||
parameters {
|
||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Clone Repository') {
|
||||
steps {
|
||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Stop and remove existing container') {
|
||||
steps {
|
||||
script {
|
||||
sh "docker stop s464953 || true"
|
||||
sh "docker rm s464953 || true"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Build Docker image') {
|
||||
steps {
|
||||
script {
|
||||
withEnv([
|
||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
||||
]) {
|
||||
sh "docker build --build-arg KAGGLE_USERNAME=$KAGGLE_USERNAME --build-arg KAGGLE_KEY=$KAGGLE_KEY -t s464953 ."
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run Docker container') {
|
||||
steps {
|
||||
script {
|
||||
withEnv([
|
||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
||||
]) {
|
||||
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app s464953"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Archive stats.txt artifact') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'stats.txt', allowEmptyArchive: true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,44 +0,0 @@
|
||||
pipeline {
|
||||
agent any
|
||||
|
||||
parameters {
|
||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Clone Repository') {
|
||||
steps {
|
||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Stop and remove existing container') {
|
||||
steps {
|
||||
script {
|
||||
sh "docker stop s464953 || true"
|
||||
sh "docker rm s464953 || true"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run Docker container') {
|
||||
steps {
|
||||
script {
|
||||
withEnv([
|
||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
||||
]) {
|
||||
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app michalgulczynski/ium_s464953:1.0"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Archive stats.txt artifact') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'stats.txt', allowEmptyArchive: true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,57 +0,0 @@
|
||||
pipeline {
|
||||
agent any
|
||||
|
||||
parameters {
|
||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Clone Repository') {
|
||||
steps {
|
||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Stop and remove existing container') {
|
||||
steps {
|
||||
script {
|
||||
sh "docker stop s464953 || true"
|
||||
sh "docker rm s464953 || true"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Build Docker image') {
|
||||
steps {
|
||||
script {
|
||||
withEnv([
|
||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
||||
]) {
|
||||
sh "docker build --build-arg KAGGLE_USERNAME=$KAGGLE_USERNAME --build-arg KAGGLE_KEY=$KAGGLE_KEY -t s464953 ."
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run Docker container') {
|
||||
steps {
|
||||
script {
|
||||
withEnv([
|
||||
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${env.KAGGLE_KEY}"
|
||||
]) {
|
||||
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app s464953"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Archive stats.txt artifact') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'model.pkl', allowEmptyArchive: true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,42 +0,0 @@
|
||||
pipeline {
|
||||
agent any
|
||||
|
||||
parameters {
|
||||
buildSelector( defaultSelector: lastSuccessful(), description: 'Build for copying artifacts', name: 'BUILD_SELECTOR')
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Clone Repository') {
|
||||
steps {
|
||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||
}
|
||||
}
|
||||
stage('Cleanup Artifacts') {
|
||||
steps {
|
||||
script {
|
||||
sh 'rm -rf artifacts'
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Copy Artifact') {
|
||||
steps {
|
||||
withEnv([
|
||||
"BUILD_SELECTOR=${params.BUILD_SELECTOR}"
|
||||
]) {
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 'z-s464953-create-dataset', selector: buildParameter('$BUILD_SELECTOR')}
|
||||
}
|
||||
}
|
||||
stage('Execute Shell Script') {
|
||||
steps {
|
||||
script {
|
||||
sh "bash ./dataset_stats.sh"
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Archive Results') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'artifacts/*', onlyIfSuccessful: true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,50 +0,0 @@
|
||||
pipeline {
|
||||
agent any
|
||||
|
||||
parameters {
|
||||
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
|
||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Clone Repository') {
|
||||
steps {
|
||||
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Download datasets') {
|
||||
steps {
|
||||
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}", "KAGGLE_KEY=${params.KAGGLE_KEY}"]) {
|
||||
sh "bash ./download_dataset.sh"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Build and Run Experiments') {
|
||||
agent {
|
||||
dockerfile {
|
||||
reuseNode true
|
||||
}
|
||||
}
|
||||
|
||||
environment {
|
||||
KAGGLE_USERNAME = "${params.KAGGLE_USERNAME}"
|
||||
KAGGLE_KEY = "${params.KAGGLE_KEY}"
|
||||
}
|
||||
|
||||
steps {
|
||||
sh 'chmod +x sacred/sacred_model_creator.py'
|
||||
sh 'python3 sacred/sacred_model_creator.py'
|
||||
sh 'chmod +x sacred/sacred_use_model.py'
|
||||
sh 'python3 sacred/sacred_use_model.py'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Archive Artifacts from Experiments') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'my_experiment_logs/**', allowEmptyArchive: true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,11 +0,0 @@
|
||||
name: MLflow Example
|
||||
|
||||
conda_env: conda.yaml
|
||||
|
||||
entry_points:
|
||||
main:
|
||||
command: "python model_creator.py {max_iter}"
|
||||
parameters:
|
||||
max_iter: {type: int, default: 1000}
|
||||
test:
|
||||
command: "python use_model.py"
|
File diff suppressed because it is too large
Load Diff
@ -1,11 +0,0 @@
|
||||
name: Spotify genre recognition - s464953
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- python=3.9
|
||||
- pip
|
||||
- pip:
|
||||
- mlflow
|
||||
- pandas
|
||||
- scikit-learn
|
||||
- numpy
|
File diff suppressed because it is too large
Load Diff
@ -1,20 +0,0 @@
|
||||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
env:
|
||||
conda: conda.yaml
|
||||
virtualenv: python_env.yaml
|
||||
loader_module: mlflow.sklearn
|
||||
model_path: model.pkl
|
||||
predict_fn: predict
|
||||
python_version: 3.9.19
|
||||
sklearn:
|
||||
code: null
|
||||
pickled_model: model.pkl
|
||||
serialization_format: cloudpickle
|
||||
sklearn_version: 1.4.2
|
||||
mlflow_version: 2.12.2
|
||||
model_size_bytes: 1446
|
||||
model_uuid: 9026270861774aad82aee9fc231054b4
|
||||
run_id: 04eba1c93f6a4510b4487ad0789fa76f
|
||||
utc_time_created: '2024-05-13 21:25:05.523657'
|
@ -1,15 +0,0 @@
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9.19
|
||||
- pip<=24.0
|
||||
- pip:
|
||||
- mlflow==2.12.2
|
||||
- cloudpickle==3.0.0
|
||||
- numpy==1.26.4
|
||||
- packaging==23.1
|
||||
- psutil==5.9.5
|
||||
- pyyaml==6.0.1
|
||||
- scikit-learn==1.4.2
|
||||
- scipy==1.13.0
|
||||
name: mlflow-env
|
@ -1,20 +0,0 @@
|
||||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
env:
|
||||
conda: conda.yaml
|
||||
virtualenv: python_env.yaml
|
||||
loader_module: mlflow.sklearn
|
||||
model_path: model.pkl
|
||||
predict_fn: predict
|
||||
python_version: 3.9.19
|
||||
sklearn:
|
||||
code: null
|
||||
pickled_model: model.pkl
|
||||
serialization_format: cloudpickle
|
||||
sklearn_version: 1.4.2
|
||||
mlflow_version: 2.12.2
|
||||
model_size_bytes: 1446
|
||||
model_uuid: 9026270861774aad82aee9fc231054b4
|
||||
run_id: 04eba1c93f6a4510b4487ad0789fa76f
|
||||
utc_time_created: '2024-05-13 21:25:05.523657'
|
@ -1,15 +0,0 @@
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9.19
|
||||
- pip<=24.0
|
||||
- pip:
|
||||
- mlflow==2.12.2
|
||||
- cloudpickle==3.0.0
|
||||
- numpy==1.26.4
|
||||
- packaging==23.1
|
||||
- psutil==5.9.5
|
||||
- pyyaml==6.0.1
|
||||
- scikit-learn==1.4.2
|
||||
- scipy==1.13.0
|
||||
name: mlflow-env
|
@ -1,7 +0,0 @@
|
||||
python: 3.9.19
|
||||
build_dependencies:
|
||||
- pip==24.0
|
||||
- setuptools
|
||||
- wheel==0.43.0
|
||||
dependencies:
|
||||
- -r requirements.txt
|
@ -1,8 +0,0 @@
|
||||
mlflow==2.12.2
|
||||
cloudpickle==3.0.0
|
||||
numpy==1.26.4
|
||||
packaging==23.1
|
||||
psutil==5.9.5
|
||||
pyyaml==6.0.1
|
||||
scikit-learn==1.4.2
|
||||
scipy==1.13.0
|
Binary file not shown.
@ -1,7 +0,0 @@
|
||||
python: 3.9.19
|
||||
build_dependencies:
|
||||
- pip==24.0
|
||||
- setuptools
|
||||
- wheel==0.43.0
|
||||
dependencies:
|
||||
- -r requirements.txt
|
@ -1,8 +0,0 @@
|
||||
mlflow==2.12.2
|
||||
cloudpickle==3.0.0
|
||||
numpy==1.26.4
|
||||
packaging==23.1
|
||||
psutil==5.9.5
|
||||
pyyaml==6.0.1
|
||||
scikit-learn==1.4.2
|
||||
scipy==1.13.0
|
@ -1,15 +0,0 @@
|
||||
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/04eba1c93f6a4510b4487ad0789fa76f/artifacts
|
||||
end_time: 1715635510283
|
||||
entry_point_name: ''
|
||||
experiment_id: '0'
|
||||
lifecycle_stage: active
|
||||
run_id: 04eba1c93f6a4510b4487ad0789fa76f
|
||||
run_name: valuable-goat-689
|
||||
run_uuid: 04eba1c93f6a4510b4487ad0789fa76f
|
||||
source_name: ''
|
||||
source_type: 4
|
||||
source_version: ''
|
||||
start_time: 1715635487472
|
||||
status: 3
|
||||
tags: []
|
||||
user_id: Michał
|
@ -1 +0,0 @@
|
||||
1715635505497 0.4782608695652174 0
|
@ -1 +0,0 @@
|
||||
1000
|
@ -1 +0,0 @@
|
||||
LogisticRegression
|
@ -1 +0,0 @@
|
||||
0.1
|
@ -1 +0,0 @@
|
||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
@ -1 +0,0 @@
|
||||
[{"run_id": "04eba1c93f6a4510b4487ad0789fa76f", "artifact_path": "model", "utc_time_created": "2024-05-13 21:25:05.523657", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "9026270861774aad82aee9fc231054b4", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]
|
@ -1 +0,0 @@
|
||||
local
|
@ -1 +0,0 @@
|
||||
main
|
@ -1 +0,0 @@
|
||||
conda
|
@ -1 +0,0 @@
|
||||
valuable-goat-689
|
@ -1 +0,0 @@
|
||||
390d6b118b45f3613f049b5cf665ff66ca00cbd5
|
@ -1 +0,0 @@
|
||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
@ -1 +0,0 @@
|
||||
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject
|
@ -1 +0,0 @@
|
||||
PROJECT
|
@ -1 +0,0 @@
|
||||
Michał
|
@ -1,20 +0,0 @@
|
||||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
env:
|
||||
conda: conda.yaml
|
||||
virtualenv: python_env.yaml
|
||||
loader_module: mlflow.sklearn
|
||||
model_path: model.pkl
|
||||
predict_fn: predict
|
||||
python_version: 3.9.19
|
||||
sklearn:
|
||||
code: null
|
||||
pickled_model: model.pkl
|
||||
serialization_format: cloudpickle
|
||||
sklearn_version: 1.4.2
|
||||
mlflow_version: 2.12.2
|
||||
model_size_bytes: 1446
|
||||
model_uuid: b733a1b574ba4815ac1f2887d47fe45c
|
||||
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
|
||||
utc_time_created: '2024-05-13 21:21:21.420484'
|
@ -1,15 +0,0 @@
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9.19
|
||||
- pip<=24.0
|
||||
- pip:
|
||||
- mlflow==2.12.2
|
||||
- cloudpickle==3.0.0
|
||||
- numpy==1.26.4
|
||||
- packaging==23.1
|
||||
- psutil==5.9.5
|
||||
- pyyaml==6.0.1
|
||||
- scikit-learn==1.4.2
|
||||
- scipy==1.13.0
|
||||
name: mlflow-env
|
@ -1,20 +0,0 @@
|
||||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
env:
|
||||
conda: conda.yaml
|
||||
virtualenv: python_env.yaml
|
||||
loader_module: mlflow.sklearn
|
||||
model_path: model.pkl
|
||||
predict_fn: predict
|
||||
python_version: 3.9.19
|
||||
sklearn:
|
||||
code: null
|
||||
pickled_model: model.pkl
|
||||
serialization_format: cloudpickle
|
||||
sklearn_version: 1.4.2
|
||||
mlflow_version: 2.12.2
|
||||
model_size_bytes: 1446
|
||||
model_uuid: b733a1b574ba4815ac1f2887d47fe45c
|
||||
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
|
||||
utc_time_created: '2024-05-13 21:21:21.420484'
|
@ -1,15 +0,0 @@
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9.19
|
||||
- pip<=24.0
|
||||
- pip:
|
||||
- mlflow==2.12.2
|
||||
- cloudpickle==3.0.0
|
||||
- numpy==1.26.4
|
||||
- packaging==23.1
|
||||
- psutil==5.9.5
|
||||
- pyyaml==6.0.1
|
||||
- scikit-learn==1.4.2
|
||||
- scipy==1.13.0
|
||||
name: mlflow-env
|
@ -1,7 +0,0 @@
|
||||
python: 3.9.19
|
||||
build_dependencies:
|
||||
- pip==24.0
|
||||
- setuptools
|
||||
- wheel==0.43.0
|
||||
dependencies:
|
||||
- -r requirements.txt
|
@ -1,8 +0,0 @@
|
||||
mlflow==2.12.2
|
||||
cloudpickle==3.0.0
|
||||
numpy==1.26.4
|
||||
packaging==23.1
|
||||
psutil==5.9.5
|
||||
pyyaml==6.0.1
|
||||
scikit-learn==1.4.2
|
||||
scipy==1.13.0
|
Binary file not shown.
@ -1,7 +0,0 @@
|
||||
python: 3.9.19
|
||||
build_dependencies:
|
||||
- pip==24.0
|
||||
- setuptools
|
||||
- wheel==0.43.0
|
||||
dependencies:
|
||||
- -r requirements.txt
|
@ -1,8 +0,0 @@
|
||||
mlflow==2.12.2
|
||||
cloudpickle==3.0.0
|
||||
numpy==1.26.4
|
||||
packaging==23.1
|
||||
psutil==5.9.5
|
||||
pyyaml==6.0.1
|
||||
scikit-learn==1.4.2
|
||||
scipy==1.13.0
|
@ -1,15 +0,0 @@
|
||||
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/2e98f71c04cd4e21a26b13ae9daaf43b/artifacts
|
||||
end_time: 1715635286846
|
||||
entry_point_name: ''
|
||||
experiment_id: '0'
|
||||
lifecycle_stage: active
|
||||
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
|
||||
run_name: illustrious-shark-67
|
||||
run_uuid: 2e98f71c04cd4e21a26b13ae9daaf43b
|
||||
source_name: ''
|
||||
source_type: 4
|
||||
source_version: ''
|
||||
start_time: 1715635260477
|
||||
status: 3
|
||||
tags: []
|
||||
user_id: Michał
|
@ -1 +0,0 @@
|
||||
1715635281395 0.4782608695652174 0
|
@ -1 +0,0 @@
|
||||
1000
|
@ -1 +0,0 @@
|
||||
LogisticRegression
|
@ -1 +0,0 @@
|
||||
0.1
|
@ -1 +0,0 @@
|
||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
@ -1 +0,0 @@
|
||||
[{"run_id": "2e98f71c04cd4e21a26b13ae9daaf43b", "artifact_path": "model", "utc_time_created": "2024-05-13 21:21:21.420484", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "b733a1b574ba4815ac1f2887d47fe45c", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]
|
@ -1 +0,0 @@
|
||||
local
|
@ -1 +0,0 @@
|
||||
main
|
@ -1 +0,0 @@
|
||||
conda
|
@ -1 +0,0 @@
|
||||
illustrious-shark-67
|
@ -1 +0,0 @@
|
||||
390d6b118b45f3613f049b5cf665ff66ca00cbd5
|
@ -1 +0,0 @@
|
||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
@ -1 +0,0 @@
|
||||
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject
|
@ -1 +0,0 @@
|
||||
PROJECT
|
@ -1 +0,0 @@
|
||||
Michał
|
@ -1,20 +0,0 @@
|
||||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
env:
|
||||
conda: conda.yaml
|
||||
virtualenv: python_env.yaml
|
||||
loader_module: mlflow.sklearn
|
||||
model_path: model.pkl
|
||||
predict_fn: predict
|
||||
python_version: 3.9.19
|
||||
sklearn:
|
||||
code: null
|
||||
pickled_model: model.pkl
|
||||
serialization_format: cloudpickle
|
||||
sklearn_version: 1.4.2
|
||||
mlflow_version: 2.12.2
|
||||
model_size_bytes: 1446
|
||||
model_uuid: 89ad4cf7b9e7444ea84049ba5d88fdb8
|
||||
run_id: 71242ca0b6f446d89f411c36212b6761
|
||||
utc_time_created: '2024-05-13 20:57:47.221852'
|
@ -1,15 +0,0 @@
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9.19
|
||||
- pip<=24.0
|
||||
- pip:
|
||||
- mlflow==2.12.2
|
||||
- cloudpickle==3.0.0
|
||||
- numpy==1.26.4
|
||||
- packaging==23.1
|
||||
- psutil==5.9.5
|
||||
- pyyaml==6.0.1
|
||||
- scikit-learn==1.4.2
|
||||
- scipy==1.13.0
|
||||
name: mlflow-env
|
@ -1,20 +0,0 @@
|
||||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
env:
|
||||
conda: conda.yaml
|
||||
virtualenv: python_env.yaml
|
||||
loader_module: mlflow.sklearn
|
||||
model_path: model.pkl
|
||||
predict_fn: predict
|
||||
python_version: 3.9.19
|
||||
sklearn:
|
||||
code: null
|
||||
pickled_model: model.pkl
|
||||
serialization_format: cloudpickle
|
||||
sklearn_version: 1.4.2
|
||||
mlflow_version: 2.12.2
|
||||
model_size_bytes: 1446
|
||||
model_uuid: 89ad4cf7b9e7444ea84049ba5d88fdb8
|
||||
run_id: 71242ca0b6f446d89f411c36212b6761
|
||||
utc_time_created: '2024-05-13 20:57:47.221852'
|
@ -1,15 +0,0 @@
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9.19
|
||||
- pip<=24.0
|
||||
- pip:
|
||||
- mlflow==2.12.2
|
||||
- cloudpickle==3.0.0
|
||||
- numpy==1.26.4
|
||||
- packaging==23.1
|
||||
- psutil==5.9.5
|
||||
- pyyaml==6.0.1
|
||||
- scikit-learn==1.4.2
|
||||
- scipy==1.13.0
|
||||
name: mlflow-env
|
@ -1,7 +0,0 @@
|
||||
python: 3.9.19
|
||||
build_dependencies:
|
||||
- pip==24.0
|
||||
- setuptools
|
||||
- wheel==0.43.0
|
||||
dependencies:
|
||||
- -r requirements.txt
|
@ -1,8 +0,0 @@
|
||||
mlflow==2.12.2
|
||||
cloudpickle==3.0.0
|
||||
numpy==1.26.4
|
||||
packaging==23.1
|
||||
psutil==5.9.5
|
||||
pyyaml==6.0.1
|
||||
scikit-learn==1.4.2
|
||||
scipy==1.13.0
|
Binary file not shown.
@ -1,7 +0,0 @@
|
||||
python: 3.9.19
|
||||
build_dependencies:
|
||||
- pip==24.0
|
||||
- setuptools
|
||||
- wheel==0.43.0
|
||||
dependencies:
|
||||
- -r requirements.txt
|
@ -1,8 +0,0 @@
|
||||
mlflow==2.12.2
|
||||
cloudpickle==3.0.0
|
||||
numpy==1.26.4
|
||||
packaging==23.1
|
||||
psutil==5.9.5
|
||||
pyyaml==6.0.1
|
||||
scikit-learn==1.4.2
|
||||
scipy==1.13.0
|
@ -1,15 +0,0 @@
|
||||
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/71242ca0b6f446d89f411c36212b6761/artifacts
|
||||
end_time: 1715633872371
|
||||
entry_point_name: ''
|
||||
experiment_id: '0'
|
||||
lifecycle_stage: active
|
||||
run_id: 71242ca0b6f446d89f411c36212b6761
|
||||
run_name: industrious-gull-774
|
||||
run_uuid: 71242ca0b6f446d89f411c36212b6761
|
||||
source_name: ''
|
||||
source_type: 4
|
||||
source_version: ''
|
||||
start_time: 1715633850262
|
||||
status: 3
|
||||
tags: []
|
||||
user_id: Michał
|
@ -1 +0,0 @@
|
||||
1715633867196 0.4782608695652174 0
|
@ -1 +0,0 @@
|
||||
1000
|
@ -1 +0,0 @@
|
||||
LogisticRegression
|
@ -1 +0,0 @@
|
||||
0.1
|
@ -1 +0,0 @@
|
||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
@ -1 +0,0 @@
|
||||
[{"run_id": "71242ca0b6f446d89f411c36212b6761", "artifact_path": "model", "utc_time_created": "2024-05-13 20:57:47.221852", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "89ad4cf7b9e7444ea84049ba5d88fdb8", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]
|
@ -1 +0,0 @@
|
||||
local
|
@ -1 +0,0 @@
|
||||
main
|
@ -1 +0,0 @@
|
||||
conda
|
@ -1 +0,0 @@
|
||||
industrious-gull-774
|
@ -1 +0,0 @@
|
||||
390d6b118b45f3613f049b5cf665ff66ca00cbd5
|
@ -1 +0,0 @@
|
||||
https://git.wmi.amu.edu.pl/s464953/ium_464953.git
|
@ -1 +0,0 @@
|
||||
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject
|
@ -1 +0,0 @@
|
||||
PROJECT
|
@ -1 +0,0 @@
|
||||
Michał
|
@ -1,20 +0,0 @@
|
||||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
env:
|
||||
conda: conda.yaml
|
||||
virtualenv: python_env.yaml
|
||||
loader_module: mlflow.sklearn
|
||||
model_path: model.pkl
|
||||
predict_fn: predict
|
||||
python_version: 3.9.19
|
||||
sklearn:
|
||||
code: null
|
||||
pickled_model: model.pkl
|
||||
serialization_format: cloudpickle
|
||||
sklearn_version: 1.4.2
|
||||
mlflow_version: 2.12.2
|
||||
model_size_bytes: 1446
|
||||
model_uuid: c575ab1b63c840b1b87f2c5d6a51721c
|
||||
run_id: ef10e2199a2346dabe10eb9e7bdea061
|
||||
utc_time_created: '2024-05-13 20:51:58.533911'
|
@ -1,15 +0,0 @@
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9.19
|
||||
- pip<=24.0
|
||||
- pip:
|
||||
- mlflow==2.12.2
|
||||
- cloudpickle==3.0.0
|
||||
- numpy==1.26.4
|
||||
- packaging==23.1
|
||||
- psutil==5.9.5
|
||||
- pyyaml==6.0.1
|
||||
- scikit-learn==1.4.2
|
||||
- scipy==1.13.0
|
||||
name: mlflow-env
|
@ -1,20 +0,0 @@
|
||||
artifact_path: model
|
||||
flavors:
|
||||
python_function:
|
||||
env:
|
||||
conda: conda.yaml
|
||||
virtualenv: python_env.yaml
|
||||
loader_module: mlflow.sklearn
|
||||
model_path: model.pkl
|
||||
predict_fn: predict
|
||||
python_version: 3.9.19
|
||||
sklearn:
|
||||
code: null
|
||||
pickled_model: model.pkl
|
||||
serialization_format: cloudpickle
|
||||
sklearn_version: 1.4.2
|
||||
mlflow_version: 2.12.2
|
||||
model_size_bytes: 1446
|
||||
model_uuid: c575ab1b63c840b1b87f2c5d6a51721c
|
||||
run_id: ef10e2199a2346dabe10eb9e7bdea061
|
||||
utc_time_created: '2024-05-13 20:51:58.533911'
|
@ -1,15 +0,0 @@
|
||||
channels:
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9.19
|
||||
- pip<=24.0
|
||||
- pip:
|
||||
- mlflow==2.12.2
|
||||
- cloudpickle==3.0.0
|
||||
- numpy==1.26.4
|
||||
- packaging==23.1
|
||||
- psutil==5.9.5
|
||||
- pyyaml==6.0.1
|
||||
- scikit-learn==1.4.2
|
||||
- scipy==1.13.0
|
||||
name: mlflow-env
|
@ -1,7 +0,0 @@
|
||||
python: 3.9.19
|
||||
build_dependencies:
|
||||
- pip==24.0
|
||||
- setuptools
|
||||
- wheel==0.43.0
|
||||
dependencies:
|
||||
- -r requirements.txt
|
@ -1,8 +0,0 @@
|
||||
mlflow==2.12.2
|
||||
cloudpickle==3.0.0
|
||||
numpy==1.26.4
|
||||
packaging==23.1
|
||||
psutil==5.9.5
|
||||
pyyaml==6.0.1
|
||||
scikit-learn==1.4.2
|
||||
scipy==1.13.0
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user