Compare commits

..

8 Commits

Author SHA1 Message Date
70e774b2fa added model training 2024-05-09 00:47:34 +02:00
9614bea42a added model training 2024-05-09 00:30:13 +02:00
6e51e6f7d4 added model training 2024-05-09 00:24:27 +02:00
8834036711 added model training 2024-05-09 00:23:19 +02:00
8e9f37aaff added model training 2024-05-09 00:19:43 +02:00
cd670b95ea added model training 2024-05-09 00:17:55 +02:00
1f42dd374e added model training 2024-05-09 00:13:31 +02:00
b20f390d38 added model training 2024-05-09 00:06:02 +02:00
167 changed files with 127 additions and 2000229 deletions

3
.dvc/.gitignore vendored
View File

@ -1,3 +0,0 @@
/config.local
/tmp
/cache

View File

@ -1,4 +0,0 @@
[core]
remote = ium_ssh_remote
['remote "ium_ssh_remote"']
url = ssh://ium-sftp@tzietkiewicz.vm.wmi.amu.edu.pl

View File

@ -1,3 +0,0 @@
# Add patterns of files dvc should ignore, which could improve
# the performance. Learn more at
# https://dvc.org/doc/user-guide/dvcignore

2
.gitignore vendored
View File

@ -1,2 +0,0 @@
/Spotify_Dataset.csv
/spotify_songs.csv

View File

@ -0,0 +1,17 @@
FROM ubuntu:latest
RUN apt-get update && \
apt-get install -y \
python3 \
python3-pip \
wget \
unzip \
&& rm -rf /var/lib/apt/lists/*
RUN pip3 install pandas scikit-learn requests numpy
WORKDIR /app
COPY model_creator.py /app/
RUN chmod +x model_creator.py

View File

@ -0,0 +1,39 @@
pipeline {
agent any
triggers {
upstream(upstreamProjects: 'z-s464953-create-dataset', threshold: hudson.model.Result.SUCCESS)
}
parameters {
string(name: 'TEST_SIZE', defaultValue: '0.10', description: 'Size of test dataset')
string(name: 'MAX_ITER', defaultValue: '1000', description: 'Max number of iterations')
buildSelector(defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR')
}
stages {
stage('Clone Repository') {
steps {
git branch: 'training', url: 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
}
}
stage('Copy Artifacts') {
steps {
copyArtifacts filter: 'artifacts/*', projectName: 'z-s464953-create-dataset', selector: buildParameter('BUILD_SELECTOR')
}
}
stage("Run Docker") {
agent {
dockerfile {
filename 'Dockerfile'
reuseNode true
}
}
steps {
sh "python3 /app/model_creator.py ${params.TEST_SIZE} ${params.MAX_ITER}"
archiveArtifacts artifacts: '/app/model.pkl', onlyIfSuccessful: true
}
}
}
}

View File

@ -10,9 +10,27 @@ from sklearn.preprocessing import StandardScaler
from sklearn. preprocessing import LabelEncoder from sklearn. preprocessing import LabelEncoder
import pickle import pickle
def check_datasets_presence():
dataset_1 = "Spotify_Dataset.csv"
dataset_2 = "spotify_songs.csv"
destination_folder = "artifacts"
if not os.path.exists(destination_folder):
raise FileNotFoundError(destination_folder + " folder not found")
if dataset_1 in os.listdir("/."):
shutil.move(dataset_1, destination_folder)
elif dataset_1 not in os.listdir(destination_folder):
raise FileNotFoundError(dataset_1 + " not found")
if dataset_2 in os.listdir("/."):
shutil.move(dataset_2, destination_folder)
elif dataset_2 not in os.listdir(destination_folder):
raise FileNotFoundError(dataset_2 + " not found")
def datasets_preparation(): def datasets_preparation():
df_1 = pd.read_csv("spotify_songs.csv") df_1 = pd.read_csv("artifacts/spotify_songs.csv")
df_2 = pd.read_csv("Spotify_Dataset.csv", sep=";") df_2 = pd.read_csv("artifacts/Spotify_Dataset.csv", sep=";")
df_1 = df_1.dropna() df_1 = df_1.dropna()
df_2 = df_2.dropna() df_2 = df_2.dropna()
@ -42,8 +60,8 @@ def datasets_preparation():
#df_1 = df_1.iloc[20:] #df_1 = df_1.iloc[20:]
if "docker_test_dataset.csv" not in os.listdir(): if "docker_test_dataset.csv" not in os.listdir("artifacts"):
diff_df.to_csv("docker_test_dataset.csv", index=False) diff_df.to_csv("artifacts/docker_test_dataset.csv", index=False)
result_df = pd.merge(df_1, df_2, on='track_name', how='inner') result_df = pd.merge(df_1, df_2, on='track_name', how='inner')
result_df = result_df.drop_duplicates(subset=['track_name']) result_df = result_df.drop_duplicates(subset=['track_name'])
@ -57,6 +75,8 @@ def datasets_preparation():
return result_df return result_df
check_datasets_presence()
result_df = datasets_preparation() result_df = datasets_preparation()
Y = result_df[['playlist_genre']] Y = result_df[['playlist_genre']]
X = result_df.drop(columns='playlist_genre') X = result_df.drop(columns='playlist_genre')

View File

@ -2,11 +2,16 @@ FROM ubuntu:latest
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y \ apt-get install -y \
python3 \ python3 \
python3-pip \ python3-pip \
git \
wget \ wget \
unzip \ unzip \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
RUN pip3 install pandas scikit-learn requests kaggle numpy sacred pymongo --break-system-package RUN pip3 install pandas scikit-learn requests numpy
WORKDIR /app
COPY model_creator.py /app/
RUN chmod +x model_creator.py

41
Jenkinsfile vendored
View File

@ -1,39 +1,38 @@
pipeline { pipeline {
agent any agent any
triggers {
upstream(upstreamProjects: 'z-s464953-create-dataset', threshold: hudson.model.Result.SUCCESS)
}
parameters { parameters {
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username') string(name: 'TEST_SIZE', defaultValue: '0.10', description: 'Size of test dataset')
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key') string(name: 'MAX_ITER', defaultValue: '1000', description: 'Max number of iterations')
buildSelector(defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR')
} }
stages { stages {
stage('Clone Repository') { stage('Clone Repository') {
steps { steps {
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git' git branch: 'training', url: 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
} }
} }
stage('Cleanup Artifacts') { stage('Copy Artifacts') {
steps { steps {
script { copyArtifacts filter: 'artifacts/*', projectName: 'z-s464953-create-dataset', selector: buildParameter('BUILD_SELECTOR')
sh 'rm -rf artifacts' }
}
stage("Run Docker") {
agent {
dockerfile {
filename 'Dockerfile'
reuseNode true
} }
} }
}
stage('Run Script') {
steps { steps {
script {
withEnv([ sh "python3 /app/model_creator.py ${params.TEST_SIZE} ${params.MAX_ITER}"
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}", archiveArtifacts artifacts: 'model.pkl, artifacts/docker_test_dataset.csv', onlyIfSuccessful: true
"KAGGLE_KEY=${env.KAGGLE_KEY}"])
{
sh "bash ./download_dataset.sh"
}
}
}
}
stage('Archive Artifacts') {
steps {
archiveArtifacts artifacts: 'artifacts/*', onlyIfSuccessful: true
} }
} }
} }

View File

@ -1,57 +0,0 @@
pipeline {
agent any
parameters {
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
}
stages {
stage('Clone Repository') {
steps {
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
}
}
stage('Stop and remove existing container') {
steps {
script {
sh "docker stop s464953 || true"
sh "docker rm s464953 || true"
}
}
}
stage('Build Docker image') {
steps {
script {
withEnv([
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
"KAGGLE_KEY=${env.KAGGLE_KEY}"
]) {
sh "docker build --build-arg KAGGLE_USERNAME=$KAGGLE_USERNAME --build-arg KAGGLE_KEY=$KAGGLE_KEY -t s464953 ."
}
}
}
}
stage('Run Docker container') {
steps {
script {
withEnv([
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
"KAGGLE_KEY=${env.KAGGLE_KEY}"
]) {
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app s464953"
}
}
}
}
stage('Archive stats.txt artifact') {
steps {
archiveArtifacts artifacts: 'stats.txt', allowEmptyArchive: true
}
}
}
}

View File

@ -1,44 +0,0 @@
pipeline {
agent any
parameters {
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
}
stages {
stage('Clone Repository') {
steps {
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
}
}
stage('Stop and remove existing container') {
steps {
script {
sh "docker stop s464953 || true"
sh "docker rm s464953 || true"
}
}
}
stage('Run Docker container') {
steps {
script {
withEnv([
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
"KAGGLE_KEY=${env.KAGGLE_KEY}"
]) {
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app michalgulczynski/ium_s464953:1.0"
}
}
}
}
stage('Archive stats.txt artifact') {
steps {
archiveArtifacts artifacts: 'stats.txt', allowEmptyArchive: true
}
}
}
}

View File

@ -1,57 +0,0 @@
pipeline {
agent any
parameters {
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
}
stages {
stage('Clone Repository') {
steps {
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
}
}
stage('Stop and remove existing container') {
steps {
script {
sh "docker stop s464953 || true"
sh "docker rm s464953 || true"
}
}
}
stage('Build Docker image') {
steps {
script {
withEnv([
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
"KAGGLE_KEY=${env.KAGGLE_KEY}"
]) {
sh "docker build --build-arg KAGGLE_USERNAME=$KAGGLE_USERNAME --build-arg KAGGLE_KEY=$KAGGLE_KEY -t s464953 ."
}
}
}
}
stage('Run Docker container') {
steps {
script {
withEnv([
"KAGGLE_USERNAME=${env.KAGGLE_USERNAME}",
"KAGGLE_KEY=${env.KAGGLE_KEY}"
]) {
sh "docker run --name s464953 -e KAGGLE_USERNAME=$KAGGLE_USERNAME -e KAGGLE_KEY=$KAGGLE_KEY -v ${WORKSPACE}:/app s464953"
}
}
}
}
stage('Archive stats.txt artifact') {
steps {
archiveArtifacts artifacts: 'model.pkl', allowEmptyArchive: true
}
}
}
}

View File

@ -1,42 +0,0 @@
pipeline {
agent any
parameters {
buildSelector( defaultSelector: lastSuccessful(), description: 'Build for copying artifacts', name: 'BUILD_SELECTOR')
}
stages {
stage('Clone Repository') {
steps {
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
}
}
stage('Cleanup Artifacts') {
steps {
script {
sh 'rm -rf artifacts'
}
}
}
stage('Copy Artifact') {
steps {
withEnv([
"BUILD_SELECTOR=${params.BUILD_SELECTOR}"
]) {
copyArtifacts fingerprintArtifacts: true, projectName: 'z-s464953-create-dataset', selector: buildParameter('$BUILD_SELECTOR')}
}
}
stage('Execute Shell Script') {
steps {
script {
sh "bash ./dataset_stats.sh"
}
}
}
stage('Archive Results') {
steps {
archiveArtifacts artifacts: 'artifacts/*', onlyIfSuccessful: true
}
}
}
}

View File

@ -1,50 +0,0 @@
pipeline {
agent any
parameters {
string(name: 'KAGGLE_USERNAME', defaultValue: 'gulczas', description: 'Kaggle username')
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
}
stages {
stage('Clone Repository') {
steps {
git 'https://git.wmi.amu.edu.pl/s464953/ium_464953.git'
}
}
stage('Download datasets') {
steps {
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}", "KAGGLE_KEY=${params.KAGGLE_KEY}"]) {
sh "bash ./download_dataset.sh"
}
}
}
stage('Build and Run Experiments') {
agent {
dockerfile {
reuseNode true
}
}
environment {
KAGGLE_USERNAME = "${params.KAGGLE_USERNAME}"
KAGGLE_KEY = "${params.KAGGLE_KEY}"
}
steps {
sh 'chmod +x sacred/sacred_model_creator.py'
sh 'python3 sacred/sacred_model_creator.py'
sh 'chmod +x sacred/sacred_use_model.py'
sh 'python3 sacred/sacred_use_model.py'
}
}
stage('Archive Artifacts from Experiments') {
steps {
archiveArtifacts artifacts: 'my_experiment_logs/**', allowEmptyArchive: true
}
}
}
}

View File

@ -1,11 +0,0 @@
name: MLflow Example
conda_env: conda.yaml
entry_points:
main:
command: "python model_creator.py {max_iter}"
parameters:
max_iter: {type: int, default: 1000}
test:
command: "python use_model.py"

File diff suppressed because it is too large Load Diff

View File

@ -1,11 +0,0 @@
name: Spotify genre recognition - s464953
channels:
- defaults
dependencies:
- python=3.9
- pip
- pip:
- mlflow
- pandas
- scikit-learn
- numpy

File diff suppressed because it is too large Load Diff

View File

@ -1,20 +0,0 @@
artifact_path: model
flavors:
python_function:
env:
conda: conda.yaml
virtualenv: python_env.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
predict_fn: predict
python_version: 3.9.19
sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.4.2
mlflow_version: 2.12.2
model_size_bytes: 1446
model_uuid: 9026270861774aad82aee9fc231054b4
run_id: 04eba1c93f6a4510b4487ad0789fa76f
utc_time_created: '2024-05-13 21:25:05.523657'

View File

@ -1,15 +0,0 @@
channels:
- conda-forge
dependencies:
- python=3.9.19
- pip<=24.0
- pip:
- mlflow==2.12.2
- cloudpickle==3.0.0
- numpy==1.26.4
- packaging==23.1
- psutil==5.9.5
- pyyaml==6.0.1
- scikit-learn==1.4.2
- scipy==1.13.0
name: mlflow-env

View File

@ -1,20 +0,0 @@
artifact_path: model
flavors:
python_function:
env:
conda: conda.yaml
virtualenv: python_env.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
predict_fn: predict
python_version: 3.9.19
sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.4.2
mlflow_version: 2.12.2
model_size_bytes: 1446
model_uuid: 9026270861774aad82aee9fc231054b4
run_id: 04eba1c93f6a4510b4487ad0789fa76f
utc_time_created: '2024-05-13 21:25:05.523657'

View File

@ -1,15 +0,0 @@
channels:
- conda-forge
dependencies:
- python=3.9.19
- pip<=24.0
- pip:
- mlflow==2.12.2
- cloudpickle==3.0.0
- numpy==1.26.4
- packaging==23.1
- psutil==5.9.5
- pyyaml==6.0.1
- scikit-learn==1.4.2
- scipy==1.13.0
name: mlflow-env

View File

@ -1,7 +0,0 @@
python: 3.9.19
build_dependencies:
- pip==24.0
- setuptools
- wheel==0.43.0
dependencies:
- -r requirements.txt

View File

@ -1,8 +0,0 @@
mlflow==2.12.2
cloudpickle==3.0.0
numpy==1.26.4
packaging==23.1
psutil==5.9.5
pyyaml==6.0.1
scikit-learn==1.4.2
scipy==1.13.0

View File

@ -1,7 +0,0 @@
python: 3.9.19
build_dependencies:
- pip==24.0
- setuptools
- wheel==0.43.0
dependencies:
- -r requirements.txt

View File

@ -1,8 +0,0 @@
mlflow==2.12.2
cloudpickle==3.0.0
numpy==1.26.4
packaging==23.1
psutil==5.9.5
pyyaml==6.0.1
scikit-learn==1.4.2
scipy==1.13.0

View File

@ -1,15 +0,0 @@
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/04eba1c93f6a4510b4487ad0789fa76f/artifacts
end_time: 1715635510283
entry_point_name: ''
experiment_id: '0'
lifecycle_stage: active
run_id: 04eba1c93f6a4510b4487ad0789fa76f
run_name: valuable-goat-689
run_uuid: 04eba1c93f6a4510b4487ad0789fa76f
source_name: ''
source_type: 4
source_version: ''
start_time: 1715635487472
status: 3
tags: []
user_id: Michał

View File

@ -1 +0,0 @@
1715635505497 0.4782608695652174 0

View File

@ -1 +0,0 @@
LogisticRegression

View File

@ -1 +0,0 @@
https://git.wmi.amu.edu.pl/s464953/ium_464953.git

View File

@ -1 +0,0 @@
[{"run_id": "04eba1c93f6a4510b4487ad0789fa76f", "artifact_path": "model", "utc_time_created": "2024-05-13 21:25:05.523657", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "9026270861774aad82aee9fc231054b4", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]

View File

@ -1 +0,0 @@
390d6b118b45f3613f049b5cf665ff66ca00cbd5

View File

@ -1 +0,0 @@
https://git.wmi.amu.edu.pl/s464953/ium_464953.git

View File

@ -1 +0,0 @@
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject

View File

@ -1,20 +0,0 @@
artifact_path: model
flavors:
python_function:
env:
conda: conda.yaml
virtualenv: python_env.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
predict_fn: predict
python_version: 3.9.19
sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.4.2
mlflow_version: 2.12.2
model_size_bytes: 1446
model_uuid: b733a1b574ba4815ac1f2887d47fe45c
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
utc_time_created: '2024-05-13 21:21:21.420484'

View File

@ -1,15 +0,0 @@
channels:
- conda-forge
dependencies:
- python=3.9.19
- pip<=24.0
- pip:
- mlflow==2.12.2
- cloudpickle==3.0.0
- numpy==1.26.4
- packaging==23.1
- psutil==5.9.5
- pyyaml==6.0.1
- scikit-learn==1.4.2
- scipy==1.13.0
name: mlflow-env

View File

@ -1,20 +0,0 @@
artifact_path: model
flavors:
python_function:
env:
conda: conda.yaml
virtualenv: python_env.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
predict_fn: predict
python_version: 3.9.19
sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.4.2
mlflow_version: 2.12.2
model_size_bytes: 1446
model_uuid: b733a1b574ba4815ac1f2887d47fe45c
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
utc_time_created: '2024-05-13 21:21:21.420484'

View File

@ -1,15 +0,0 @@
channels:
- conda-forge
dependencies:
- python=3.9.19
- pip<=24.0
- pip:
- mlflow==2.12.2
- cloudpickle==3.0.0
- numpy==1.26.4
- packaging==23.1
- psutil==5.9.5
- pyyaml==6.0.1
- scikit-learn==1.4.2
- scipy==1.13.0
name: mlflow-env

View File

@ -1,7 +0,0 @@
python: 3.9.19
build_dependencies:
- pip==24.0
- setuptools
- wheel==0.43.0
dependencies:
- -r requirements.txt

View File

@ -1,8 +0,0 @@
mlflow==2.12.2
cloudpickle==3.0.0
numpy==1.26.4
packaging==23.1
psutil==5.9.5
pyyaml==6.0.1
scikit-learn==1.4.2
scipy==1.13.0

View File

@ -1,7 +0,0 @@
python: 3.9.19
build_dependencies:
- pip==24.0
- setuptools
- wheel==0.43.0
dependencies:
- -r requirements.txt

View File

@ -1,8 +0,0 @@
mlflow==2.12.2
cloudpickle==3.0.0
numpy==1.26.4
packaging==23.1
psutil==5.9.5
pyyaml==6.0.1
scikit-learn==1.4.2
scipy==1.13.0

View File

@ -1,15 +0,0 @@
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/2e98f71c04cd4e21a26b13ae9daaf43b/artifacts
end_time: 1715635286846
entry_point_name: ''
experiment_id: '0'
lifecycle_stage: active
run_id: 2e98f71c04cd4e21a26b13ae9daaf43b
run_name: illustrious-shark-67
run_uuid: 2e98f71c04cd4e21a26b13ae9daaf43b
source_name: ''
source_type: 4
source_version: ''
start_time: 1715635260477
status: 3
tags: []
user_id: Michał

View File

@ -1 +0,0 @@
1715635281395 0.4782608695652174 0

View File

@ -1 +0,0 @@
LogisticRegression

View File

@ -1 +0,0 @@
https://git.wmi.amu.edu.pl/s464953/ium_464953.git

View File

@ -1 +0,0 @@
[{"run_id": "2e98f71c04cd4e21a26b13ae9daaf43b", "artifact_path": "model", "utc_time_created": "2024-05-13 21:21:21.420484", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "b733a1b574ba4815ac1f2887d47fe45c", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]

View File

@ -1 +0,0 @@
illustrious-shark-67

View File

@ -1 +0,0 @@
390d6b118b45f3613f049b5cf665ff66ca00cbd5

View File

@ -1 +0,0 @@
https://git.wmi.amu.edu.pl/s464953/ium_464953.git

View File

@ -1 +0,0 @@
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject

View File

@ -1,20 +0,0 @@
artifact_path: model
flavors:
python_function:
env:
conda: conda.yaml
virtualenv: python_env.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
predict_fn: predict
python_version: 3.9.19
sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.4.2
mlflow_version: 2.12.2
model_size_bytes: 1446
model_uuid: 89ad4cf7b9e7444ea84049ba5d88fdb8
run_id: 71242ca0b6f446d89f411c36212b6761
utc_time_created: '2024-05-13 20:57:47.221852'

View File

@ -1,15 +0,0 @@
channels:
- conda-forge
dependencies:
- python=3.9.19
- pip<=24.0
- pip:
- mlflow==2.12.2
- cloudpickle==3.0.0
- numpy==1.26.4
- packaging==23.1
- psutil==5.9.5
- pyyaml==6.0.1
- scikit-learn==1.4.2
- scipy==1.13.0
name: mlflow-env

View File

@ -1,20 +0,0 @@
artifact_path: model
flavors:
python_function:
env:
conda: conda.yaml
virtualenv: python_env.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
predict_fn: predict
python_version: 3.9.19
sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.4.2
mlflow_version: 2.12.2
model_size_bytes: 1446
model_uuid: 89ad4cf7b9e7444ea84049ba5d88fdb8
run_id: 71242ca0b6f446d89f411c36212b6761
utc_time_created: '2024-05-13 20:57:47.221852'

View File

@ -1,15 +0,0 @@
channels:
- conda-forge
dependencies:
- python=3.9.19
- pip<=24.0
- pip:
- mlflow==2.12.2
- cloudpickle==3.0.0
- numpy==1.26.4
- packaging==23.1
- psutil==5.9.5
- pyyaml==6.0.1
- scikit-learn==1.4.2
- scipy==1.13.0
name: mlflow-env

View File

@ -1,7 +0,0 @@
python: 3.9.19
build_dependencies:
- pip==24.0
- setuptools
- wheel==0.43.0
dependencies:
- -r requirements.txt

View File

@ -1,8 +0,0 @@
mlflow==2.12.2
cloudpickle==3.0.0
numpy==1.26.4
packaging==23.1
psutil==5.9.5
pyyaml==6.0.1
scikit-learn==1.4.2
scipy==1.13.0

View File

@ -1,7 +0,0 @@
python: 3.9.19
build_dependencies:
- pip==24.0
- setuptools
- wheel==0.43.0
dependencies:
- -r requirements.txt

View File

@ -1,8 +0,0 @@
mlflow==2.12.2
cloudpickle==3.0.0
numpy==1.26.4
packaging==23.1
psutil==5.9.5
pyyaml==6.0.1
scikit-learn==1.4.2
scipy==1.13.0

View File

@ -1,15 +0,0 @@
artifact_uri: file:///D:/studia/inzynieria%20uczenia%20maszynowego/ium_464953/MLProject/mlruns/0/71242ca0b6f446d89f411c36212b6761/artifacts
end_time: 1715633872371
entry_point_name: ''
experiment_id: '0'
lifecycle_stage: active
run_id: 71242ca0b6f446d89f411c36212b6761
run_name: industrious-gull-774
run_uuid: 71242ca0b6f446d89f411c36212b6761
source_name: ''
source_type: 4
source_version: ''
start_time: 1715633850262
status: 3
tags: []
user_id: Michał

View File

@ -1 +0,0 @@
1715633867196 0.4782608695652174 0

View File

@ -1 +0,0 @@
LogisticRegression

View File

@ -1 +0,0 @@
https://git.wmi.amu.edu.pl/s464953/ium_464953.git

View File

@ -1 +0,0 @@
[{"run_id": "71242ca0b6f446d89f411c36212b6761", "artifact_path": "model", "utc_time_created": "2024-05-13 20:57:47.221852", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.9.19", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.2", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "89ad4cf7b9e7444ea84049ba5d88fdb8", "mlflow_version": "2.12.2", "model_size_bytes": 1446}]

View File

@ -1 +0,0 @@
industrious-gull-774

View File

@ -1 +0,0 @@
390d6b118b45f3613f049b5cf665ff66ca00cbd5

View File

@ -1 +0,0 @@
https://git.wmi.amu.edu.pl/s464953/ium_464953.git

View File

@ -1 +0,0 @@
file://D:\studia\inzynieria uczenia maszynowego\ium_464953#\MLProject

View File

@ -1,20 +0,0 @@
artifact_path: model
flavors:
python_function:
env:
conda: conda.yaml
virtualenv: python_env.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
predict_fn: predict
python_version: 3.9.19
sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.4.2
mlflow_version: 2.12.2
model_size_bytes: 1446
model_uuid: c575ab1b63c840b1b87f2c5d6a51721c
run_id: ef10e2199a2346dabe10eb9e7bdea061
utc_time_created: '2024-05-13 20:51:58.533911'

View File

@ -1,15 +0,0 @@
channels:
- conda-forge
dependencies:
- python=3.9.19
- pip<=24.0
- pip:
- mlflow==2.12.2
- cloudpickle==3.0.0
- numpy==1.26.4
- packaging==23.1
- psutil==5.9.5
- pyyaml==6.0.1
- scikit-learn==1.4.2
- scipy==1.13.0
name: mlflow-env

View File

@ -1,20 +0,0 @@
artifact_path: model
flavors:
python_function:
env:
conda: conda.yaml
virtualenv: python_env.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
predict_fn: predict
python_version: 3.9.19
sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.4.2
mlflow_version: 2.12.2
model_size_bytes: 1446
model_uuid: c575ab1b63c840b1b87f2c5d6a51721c
run_id: ef10e2199a2346dabe10eb9e7bdea061
utc_time_created: '2024-05-13 20:51:58.533911'

View File

@ -1,15 +0,0 @@
channels:
- conda-forge
dependencies:
- python=3.9.19
- pip<=24.0
- pip:
- mlflow==2.12.2
- cloudpickle==3.0.0
- numpy==1.26.4
- packaging==23.1
- psutil==5.9.5
- pyyaml==6.0.1
- scikit-learn==1.4.2
- scipy==1.13.0
name: mlflow-env

View File

@ -1,7 +0,0 @@
python: 3.9.19
build_dependencies:
- pip==24.0
- setuptools
- wheel==0.43.0
dependencies:
- -r requirements.txt

View File

@ -1,8 +0,0 @@
mlflow==2.12.2
cloudpickle==3.0.0
numpy==1.26.4
packaging==23.1
psutil==5.9.5
pyyaml==6.0.1
scikit-learn==1.4.2
scipy==1.13.0

Some files were not shown because too many files have changed in this diff Show More