import pickle import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score from sacred import Experiment from sacred.observers import MongoObserver, FileObserver ex = Experiment('464953_evaluation') # Dodanie obserwatorów ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017')) ex.observers.append(FileObserver('my_experiment_logs')) @ex.config def config(): model_filename = 'model.pkl' test_dataset_filename = 'datasets/docker_test_dataset.csv' @ex.main def run_evaluation(model_filename, test_dataset_filename): with open(model_filename, 'rb') as file: model = pickle.load(file) print("Model został wczytany z pliku:", model_filename) test_df = pd.read_csv(test_dataset_filename) Y_test = test_df[['playlist_genre']] X_test = test_df.drop(columns='playlist_genre') Y_test = np.ravel(Y_test) scaler = StandardScaler() numeric_columns = X_test.select_dtypes(include=['int', 'float']).columns X_test_scaled = scaler.fit_transform(X_test[numeric_columns]) Y_pred = model.predict(X_test_scaled) labels_dict = {0: 'edm', 1 : 'latin', 2 : 'pop', 3 : 'r&b', 4 : 'rap', 5 :'rock'} Y_test_labels = [labels_dict[number] for number in Y_test] Y_pred_labels = [labels_dict[number] for number in Y_pred] accuracy = accuracy_score(Y_test, Y_pred) ex.log_scalar('accuracy', accuracy) with open('model_predictions.txt', 'w') as f: f.write("Real:" + str(Y_test_labels[:20]) + " \nPredicted: " + str(Y_pred_labels[:20])) f.write("\nAccuracy:" + str(accuracy)) ex.add_artifact('model_predictions.txt') ex.add_resource(__file__) print("Accuracy:", accuracy) return accuracy if __name__ == '__main__': ex.run_commandline()