import pandas as pd import os import numpy as np from kaggle.api.kaggle_api_extended import KaggleApi from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler from sklearn. preprocessing import LabelEncoder import pickle def download_dataset(dataset_address, destination_folder): api = KaggleApi() api.authenticate() api.dataset_download_files(dataset_address, path=destination_folder, unzip=True) def check_datasets_presence(): dataset_1 = "Spotify_Dataset.csv" dataset_2 = "spotify_songs.csv" destination_folder = "datasets" if not os.path.exists(destination_folder): os.makedirs(destination_folder) print(f"Utworzono folder: {destination_folder}") else: print(f"Folder {destination_folder} już istnieje.") if dataset_1 not in os.listdir(destination_folder): download_dataset('gulczas/spotify-dataset', destination_folder) if dataset_2 not in os.listdir(destination_folder): download_dataset('joebeachcapital/30000-spotify-songs', destination_folder) def datasets_preparation(): df_1 = pd.read_csv("datasets/spotify_songs.csv") df_2 = pd.read_csv("datasets/Spotify_Dataset.csv", sep=";") df_1 = df_1.dropna() df_2 = df_2.dropna() df_2 = df_2.rename(columns={'Title': 'track_name'}) columns_to_remove_df_1 = ['track_id', 'track_album_id', 'track_album_name', 'track_album_release_date', 'playlist_id', 'playlist_subgenre'] columns_to_remove_df_2 = ['Date','# of Artist', 'Artist (Ind.)', '# of Nationality', 'Nationality', 'Continent', 'Points (Total)', 'Points (Ind for each Artist/Nat)', 'id', 'Song URL'] df_1 = df_1.drop(columns=columns_to_remove_df_1) df_2 = df_2.drop(columns=columns_to_remove_df_2) df_1 = df_1.drop_duplicates(subset=['track_name']) df_2 = df_2.drop_duplicates(subset=['track_name']) le = LabelEncoder() unique_names_df2 = df_2['track_name'].unique() diff_df = df_1[~df_1['track_name'].isin(unique_names_df2)] diff_df = diff_df.iloc[:10000] #diff_df = pd.concat([diff_df, df_1.iloc[:20]], ignore_index=True) diff_df['track_artist'] = le.fit_transform(diff_df.track_artist) diff_df['playlist_name'] = le.fit_transform(diff_df.playlist_name) diff_df['playlist_genre'] = le.fit_transform(diff_df.playlist_genre) #df_1 = df_1.iloc[20:] if "docker_test_dataset.csv" not in os.listdir("datasets"): diff_df.to_csv("datasets/docker_test_dataset.csv", index=False) result_df = pd.merge(df_1, df_2, on='track_name', how='inner') result_df = result_df.drop_duplicates(subset=['track_name']) columns_to_remove_result_df = ['Rank', 'Artists', 'Danceability', 'Energy', 'Loudness', 'Speechiness', 'Acousticness', 'Instrumentalness', 'Valence'] result_df = result_df.drop(columns=columns_to_remove_result_df) result_df['track_artist'] = le.fit_transform(result_df.track_artist) result_df['playlist_name'] = le.fit_transform(result_df.playlist_name) result_df['playlist_genre'] = le.fit_transform(result_df.playlist_genre) return result_df check_datasets_presence() result_df = datasets_preparation() Y = result_df[['playlist_genre']] X = result_df.drop(columns='playlist_genre') X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.10, random_state=42) Y_train = np.ravel(Y_train) Y_test = np.ravel(Y_test) scaler = StandardScaler() numeric_columns = X_train.select_dtypes(include=['int', 'float']).columns X_train_scaled = scaler.fit_transform(X_train[numeric_columns]) X_test_scaled = scaler.transform(X_test[numeric_columns]) model = LogisticRegression(max_iter=1000) model.fit(X_train_scaled, Y_train) Y_pred = model.predict(X_test_scaled) accuracy = accuracy_score(Y_test, Y_pred) print("Accuracy:", accuracy) file_path = 'model.pkl' if os.path.exists(file_path): os.remove(file_path) if file_path not in os.listdir("./"): with open(file_path, 'wb') as file: pickle.dump(model, file) print("Model został zapisany do pliku:", file_path)