import pandas as pd import os import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder import pickle from sacred import Experiment from sacred.observers import MongoObserver, FileObserver # Tworzenie eksperymentu ex = Experiment('464953') # Zastąp '123456' swoim numerem indeksu # Dodanie obserwatorów ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017')) ex.observers.append(FileObserver('my_experiment_logs')) def datasets_preparation(): df_1 = pd.read_csv("datasets/spotify_songs.csv") df_2 = pd.read_csv("datasets/Spotify_Dataset.csv", sep=";") df_1 = df_1.dropna() df_2 = df_2.dropna() df_2 = df_2.rename(columns={'Title': 'track_name'}) columns_to_remove_df_1 = ['track_id', 'track_album_id', 'track_album_name', 'track_album_release_date', 'playlist_id', 'playlist_subgenre'] columns_to_remove_df_2 = ['Date','# of Artist', 'Artist (Ind.)', '# of Nationality', 'Nationality', 'Continent', 'Points (Total)', 'Points (Ind for each Artist/Nat)', 'id', 'Song URL'] df_1 = df_1.drop(columns=columns_to_remove_df_1) df_2 = df_2.drop(columns=columns_to_remove_df_2) df_1 = df_1.drop_duplicates(subset=['track_name']) df_2 = df_2.drop_duplicates(subset=['track_name']) le = LabelEncoder() unique_names_df2 = df_2['track_name'].unique() diff_df = df_1[~df_1['track_name'].isin(unique_names_df2)] diff_df = diff_df.iloc[:10000] diff_df['track_artist'] = le.fit_transform(diff_df.track_artist) diff_df['playlist_name'] = le.fit_transform(diff_df.playlist_name) diff_df['playlist_genre'] = le.fit_transform(diff_df.playlist_genre) if "docker_test_dataset.csv" not in os.listdir("datasets"): diff_df.to_csv("datasets/docker_test_dataset.csv", index=False) result_df = pd.merge(df_1, df_2, on='track_name', how='inner') result_df = result_df.drop_duplicates(subset=['track_name']) columns_to_remove_result_df = ['Rank', 'Artists', 'Danceability', 'Energy', 'Loudness', 'Speechiness', 'Acousticness', 'Instrumentalness', 'Valence'] result_df = result_df.drop(columns=columns_to_remove_result_df) result_df['track_artist'] = le.fit_transform(result_df.track_artist) result_df['playlist_name'] = le.fit_transform(result_df.playlist_name) result_df['playlist_genre'] = le.fit_transform(result_df.playlist_genre) return result_df @ex.config def config(): test_size = 0.10 random_state = 42 model_filename = 'model.pkl' @ex.main def run_experiment(test_size, random_state, model_filename): result_df = datasets_preparation() Y = result_df[['playlist_genre']] X = result_df.drop(columns='playlist_genre') X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=random_state) Y_train = np.ravel(Y_train) Y_test = np.ravel(Y_test) scaler = StandardScaler() numeric_columns = X_train.select_dtypes(include=['int', 'float']).columns X_train_scaled = scaler.fit_transform(X_train[numeric_columns]) X_test_scaled = scaler.transform(X_test[numeric_columns]) model = LogisticRegression(max_iter=1000) model.fit(X_train_scaled, Y_train) Y_pred = model.predict(X_test_scaled) accuracy = accuracy_score(Y_test, Y_pred) ex.log_scalar('accuracy', accuracy) if os.path.exists(model_filename): os.remove(model_filename) with open(model_filename, 'wb') as file: pickle.dump(model, file) ex.add_artifact(model_filename) ex.add_resource(__file__) print("Accuracy:", accuracy) return accuracy if __name__ == '__main__': ex.run_commandline()