import mlflow import pandas as pd import os import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler from sklearn. preprocessing import LabelEncoder import pickle import sys def datasets_preparation(): df_1 = pd.read_csv("spotify_songs.csv") df_2 = pd.read_csv("Spotify_Dataset.csv", sep=";") df_1 = df_1.dropna() df_2 = df_2.dropna() df_2 = df_2.rename(columns={'Title': 'track_name'}) columns_to_remove_df_1 = ['track_id', 'track_album_id', 'track_album_name', 'track_album_release_date', 'playlist_id', 'playlist_subgenre'] columns_to_remove_df_2 = ['Date','# of Artist', 'Artist (Ind.)', '# of Nationality', 'Nationality', 'Continent', 'Points (Total)', 'Points (Ind for each Artist/Nat)', 'id', 'Song URL'] df_1 = df_1.drop(columns=columns_to_remove_df_1) df_2 = df_2.drop(columns=columns_to_remove_df_2) df_1 = df_1.drop_duplicates(subset=['track_name']) df_2 = df_2.drop_duplicates(subset=['track_name']) le = LabelEncoder() unique_names_df2 = df_2['track_name'].unique() diff_df = df_1[~df_1['track_name'].isin(unique_names_df2)] diff_df = diff_df.iloc[:10000] diff_df['track_artist'] = le.fit_transform(diff_df.track_artist) diff_df['playlist_name'] = le.fit_transform(diff_df.playlist_name) diff_df['playlist_genre'] = le.fit_transform(diff_df.playlist_genre) if "docker_test_dataset.csv" not in os.listdir(): diff_df.to_csv("docker_test_dataset.csv", index=False) result_df = pd.merge(df_1, df_2, on='track_name', how='inner') result_df = result_df.drop_duplicates(subset=['track_name']) columns_to_remove_result_df = ['Rank', 'Artists', 'Danceability', 'Energy', 'Loudness', 'Speechiness', 'Acousticness', 'Instrumentalness', 'Valence'] result_df = result_df.drop(columns=columns_to_remove_result_df) result_df['track_artist'] = le.fit_transform(result_df.track_artist) result_df['playlist_name'] = le.fit_transform(result_df.playlist_name) result_df['playlist_genre'] = le.fit_transform(result_df.playlist_genre) return result_df def train_model_and_log(max_iter): result_df = datasets_preparation() Y = result_df[['playlist_genre']] X = result_df.drop(columns='playlist_genre') X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.10, random_state=42) Y_train = np.ravel(Y_train) Y_test = np.ravel(Y_test) scaler = StandardScaler() numeric_columns = X_train.select_dtypes(include=['int', 'float']).columns X_train_scaled = scaler.fit_transform(X_train[numeric_columns]) X_test_scaled = scaler.transform(X_test[numeric_columns]) model = LogisticRegression(max_iter=max_iter) model.fit(X_train_scaled, Y_train) Y_pred = model.predict(X_test_scaled) accuracy = accuracy_score(Y_test, Y_pred) print("Accuracy:", accuracy) with mlflow.start_run(): mlflow.log_param("model_type", "LogisticRegression") mlflow.log_param("test_size", 0.1) mlflow.log_param("max_iter", max_iter) mlflow.log_metric("accuracy", accuracy) mlflow.sklearn.log_model(model, "model") if __name__ == "__main__": max_iter = int(sys.argv[1]) if len(sys.argv) > 1 else 1000 mlflow.set_tracking_uri("http://localhost:5000") train_model_and_log(max_iter)