update
3
.gitignore
vendored
@ -149,4 +149,5 @@ cython_debug/
|
|||||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
.idea/
|
.idea/
|
||||||
|
/algorithms/neural_network/data/
|
||||||
|
Before Width: | Height: | Size: 814 B |
Before Width: | Height: | Size: 820 B |
Before Width: | Height: | Size: 789 B |
Before Width: | Height: | Size: 1.0 KiB |
Before Width: | Height: | Size: 760 B |
Before Width: | Height: | Size: 2.2 KiB |
Before Width: | Height: | Size: 725 B |
@ -10,23 +10,33 @@ from common.constants import DEVICE, BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE, SETU
|
|||||||
|
|
||||||
class NeuralNetwork(pl.LightningModule):
|
class NeuralNetwork(pl.LightningModule):
|
||||||
def __init__(self, numChannels=3, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE, num_classes=4):
|
def __init__(self, numChannels=3, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE, num_classes=4):
|
||||||
super().__init__()
|
super(NeuralNetwork, self).__init__()
|
||||||
self.layer = nn.Sequential(
|
self.conv1 = nn.Conv2d(numChannels, 24, (3, 3), padding=1)
|
||||||
nn.Linear(36*36*3, 300),
|
self.relu1 = nn.ReLU()
|
||||||
nn.ReLU(),
|
self.maxpool1 = nn.MaxPool2d((2, 2), stride=2)
|
||||||
nn.Linear(300, 4),
|
self.conv2 = nn.Conv2d(24, 48, (3, 3), padding=1)
|
||||||
nn.LogSoftmax(dim=-1)
|
self.relu2 = nn.ReLU()
|
||||||
)
|
self.fc1 = nn.Linear(48*18*18, 4)
|
||||||
|
self.relu3 = nn.ReLU()
|
||||||
|
self.fc2 = nn.Linear(500, num_classes)
|
||||||
|
self.logSoftmax = nn.LogSoftmax(dim=1)
|
||||||
|
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.learning_rate = learning_rate
|
self.learning_rate = learning_rate
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.relu1(x)
|
||||||
|
x = self.maxpool1(x)
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = self.relu2(x)
|
||||||
x = x.reshape(x.shape[0], -1)
|
x = x.reshape(x.shape[0], -1)
|
||||||
x = self.layer(x)
|
x = self.fc1(x)
|
||||||
|
x = self.logSoftmax(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
optimizer = SGD(self.parameters(), lr=self.learning_rate)
|
optimizer = Adam(self.parameters(), lr=self.learning_rate)
|
||||||
return optimizer
|
return optimizer
|
||||||
|
|
||||||
def training_step(self, batch, batch_idx):
|
def training_step(self, batch, batch_idx):
|
||||||
|
@ -100,7 +100,7 @@ def what_is_it(img_path, show_img=False):
|
|||||||
plt.imshow(plt.imread(img_path))
|
plt.imshow(plt.imread(img_path))
|
||||||
plt.show()
|
plt.show()
|
||||||
image = SETUP_PHOTOS(image).unsqueeze(0)
|
image = SETUP_PHOTOS(image).unsqueeze(0)
|
||||||
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_3/checkpoints/epoch=8-step=810.ckpt')
|
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_13/checkpoints/epoch=4-step=405.ckpt')
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
model.eval()
|
model.eval()
|
||||||
@ -109,17 +109,17 @@ def what_is_it(img_path, show_img=False):
|
|||||||
|
|
||||||
|
|
||||||
CNN = NeuralNetwork()
|
CNN = NeuralNetwork()
|
||||||
|
common.helpers.createCSV()
|
||||||
|
|
||||||
|
#trainer = pl.Trainer(accelerator='gpu', devices=1, callbacks=[EarlyStopping('val_loss')], max_epochs=NUM_EPOCHS)
|
||||||
trainer = pl.Trainer(accelerator='gpu', devices=1, auto_scale_batch_size=True, callbacks=[EarlyStopping('val_loss')], max_epochs=NUM_EPOCHS)
|
trainer = pl.Trainer(accelerator='gpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
|
||||||
#trainer = pl.Trainer(accelerator='gpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
|
|
||||||
|
|
||||||
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
||||||
test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
|
test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
#trainer.fit(CNN, train_loader, test_loader)
|
trainer.fit(CNN, train_loader, test_loader)
|
||||||
#trainer.tune(CNN, train_loader, test_loader)
|
#trainer.tune(CNN, train_loader, test_loader)
|
||||||
check_accuracy_tiles()
|
#check_accuracy_tiles()
|
||||||
print(what_is_it('../../resources/textures/sand.png', True))
|
#print(what_is_it('../../resources/textures/sand.png', True))
|
||||||
|
@ -77,19 +77,18 @@ BAR_HEIGHT_MULTIPLIER = 0.1
|
|||||||
|
|
||||||
|
|
||||||
#NEURAL_NETWORK
|
#NEURAL_NETWORK
|
||||||
LEARNING_RATE = 0.13182567385564073
|
LEARNING_RATE = 0.00478630092322638
|
||||||
BATCH_SIZE = 64
|
BATCH_SIZE = 64
|
||||||
NUM_EPOCHS = 50
|
NUM_EPOCHS = 20
|
||||||
|
|
||||||
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||||
print("Using ", DEVICE)
|
print("Using ", DEVICE)
|
||||||
CLASSES = ['grass', 'sand', 'tree', 'water']
|
CLASSES = ['grass', 'sand', 'tree', 'water']
|
||||||
|
|
||||||
SETUP_PHOTOS = transforms.Compose([
|
SETUP_PHOTOS = transforms.Compose([
|
||||||
transforms.Resize(36),
|
|
||||||
transforms.CenterCrop(36),
|
|
||||||
transforms.ToPILImage(),
|
transforms.ToPILImage(),
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
|
transforms.Resize((36, 36)),
|
||||||
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
||||||
])
|
])
|
||||||
|
|
||||||
|