Merge pull request 'cnn' (#35) from cnn into master
Reviewed-on: s464965/WMICraft#35
3
.gitignore
vendored
@ -149,4 +149,5 @@ cython_debug/
|
|||||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
.idea/
|
.idea/
|
||||||
|
/algorithms/neural_network/data/
|
||||||
|
Before Width: | Height: | Size: 814 B |
Before Width: | Height: | Size: 820 B |
Before Width: | Height: | Size: 789 B |
Before Width: | Height: | Size: 1.0 KiB |
Before Width: | Height: | Size: 760 B |
Before Width: | Height: | Size: 2.2 KiB |
Before Width: | Height: | Size: 725 B |
@ -1 +0,0 @@
|
|||||||
{}
|
|
@ -1 +0,0 @@
|
|||||||
{}
|
|
@ -1 +0,0 @@
|
|||||||
{}
|
|
@ -10,23 +10,39 @@ from common.constants import DEVICE, BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE, SETU
|
|||||||
|
|
||||||
class NeuralNetwork(pl.LightningModule):
|
class NeuralNetwork(pl.LightningModule):
|
||||||
def __init__(self, numChannels=3, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE, num_classes=4):
|
def __init__(self, numChannels=3, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE, num_classes=4):
|
||||||
super().__init__()
|
super(NeuralNetwork, self).__init__()
|
||||||
self.layer = nn.Sequential(
|
self.conv1 = nn.Conv2d(numChannels, 24, (3, 3), padding=1)
|
||||||
nn.Linear(36*36*3, 300),
|
self.relu1 = nn.ReLU()
|
||||||
nn.ReLU(),
|
self.maxpool1 = nn.MaxPool2d((2, 2), stride=2)
|
||||||
nn.Linear(300, 4),
|
self.conv2 = nn.Conv2d(24, 48, (3, 3), padding=1)
|
||||||
nn.LogSoftmax(dim=-1)
|
self.relu2 = nn.ReLU()
|
||||||
)
|
self.fc1 = nn.Linear(48*18*18, 800)
|
||||||
|
self.relu3 = nn.ReLU()
|
||||||
|
self.fc2 = nn.Linear(800, 400)
|
||||||
|
self.relu4 = nn.ReLU()
|
||||||
|
self.fc3 = nn.Linear(400, 4)
|
||||||
|
self.logSoftmax = nn.LogSoftmax(dim=1)
|
||||||
|
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.learning_rate = learning_rate
|
self.learning_rate = learning_rate
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
x = self.conv1(x)
|
||||||
|
x = self.relu1(x)
|
||||||
|
x = self.maxpool1(x)
|
||||||
|
x = self.conv2(x)
|
||||||
|
x = self.relu2(x)
|
||||||
x = x.reshape(x.shape[0], -1)
|
x = x.reshape(x.shape[0], -1)
|
||||||
x = self.layer(x)
|
x = self.fc1(x)
|
||||||
|
x = self.relu3(x)
|
||||||
|
x = self.fc2(x)
|
||||||
|
x = self.relu4(x)
|
||||||
|
x = self.fc3(x)
|
||||||
|
x = self.logSoftmax(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
optimizer = SGD(self.parameters(), lr=self.learning_rate)
|
optimizer = Adam(self.parameters(), lr=self.learning_rate)
|
||||||
return optimizer
|
return optimizer
|
||||||
|
|
||||||
def training_step(self, batch, batch_idx):
|
def training_step(self, batch, batch_idx):
|
||||||
|
@ -10,44 +10,8 @@ from torch.optim import Adam
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
from pytorch_lightning.callbacks import EarlyStopping
|
from pytorch_lightning.callbacks import EarlyStopping
|
||||||
|
import torchvision.transforms.functional as F
|
||||||
|
from PIL import Image
|
||||||
def train(model):
|
|
||||||
model = model.to(DEVICE)
|
|
||||||
model.train()
|
|
||||||
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
|
||||||
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
|
||||||
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
|
||||||
test_loader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)
|
|
||||||
|
|
||||||
criterion = nn.CrossEntropyLoss()
|
|
||||||
optimizer = Adam(model.parameters(), lr=LEARNING_RATE)
|
|
||||||
|
|
||||||
for epoch in range(NUM_EPOCHS):
|
|
||||||
for batch_idx, (data, targets) in enumerate(train_loader):
|
|
||||||
data = data.to(device=DEVICE)
|
|
||||||
targets = targets.to(device=DEVICE)
|
|
||||||
|
|
||||||
scores = model(data)
|
|
||||||
loss = criterion(scores, targets)
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
if batch_idx % 4 == 0:
|
|
||||||
print("epoch: %d loss: %.4f" % (epoch, loss.item()))
|
|
||||||
|
|
||||||
print("FINISHED TRAINING!")
|
|
||||||
torch.save(model.state_dict(), "./learnednetwork.pth")
|
|
||||||
|
|
||||||
print("Checking accuracy for the train set.")
|
|
||||||
check_accuracy(train_loader)
|
|
||||||
print("Checking accuracy for the test set.")
|
|
||||||
check_accuracy(test_loader)
|
|
||||||
print("Checking accuracy for the tiles.")
|
|
||||||
check_accuracy_tiles()
|
|
||||||
|
|
||||||
|
|
||||||
def check_accuracy_tiles():
|
def check_accuracy_tiles():
|
||||||
@ -95,12 +59,13 @@ def check_accuracy_tiles():
|
|||||||
|
|
||||||
|
|
||||||
def what_is_it(img_path, show_img=False):
|
def what_is_it(img_path, show_img=False):
|
||||||
image = read_image(img_path, mode=ImageReadMode.RGB)
|
image = Image.open(img_path).convert('RGB')
|
||||||
if show_img:
|
if show_img:
|
||||||
plt.imshow(plt.imread(img_path))
|
plt.imshow(image)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
image = SETUP_PHOTOS(image).unsqueeze(0)
|
image = SETUP_PHOTOS(image).unsqueeze(0)
|
||||||
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_3/checkpoints/epoch=8-step=810.ckpt')
|
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_20/checkpoints/epoch=3-step=324.ckpt')
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
model.eval()
|
model.eval()
|
||||||
@ -108,18 +73,53 @@ def what_is_it(img_path, show_img=False):
|
|||||||
return ID_TO_CLASS[idx]
|
return ID_TO_CLASS[idx]
|
||||||
|
|
||||||
|
|
||||||
CNN = NeuralNetwork()
|
def check_accuracy(tset):
|
||||||
|
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_23/checkpoints/epoch=3-step=324.ckpt')
|
||||||
|
num_correct = 0
|
||||||
|
num_samples = 0
|
||||||
|
model = model.to(DEVICE)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for photo, label in tset:
|
||||||
|
photo = photo.to(DEVICE)
|
||||||
|
label = label.to(DEVICE)
|
||||||
|
|
||||||
|
scores = model(photo)
|
||||||
|
predictions = scores.argmax(dim=1)
|
||||||
|
num_correct += (predictions == label).sum()
|
||||||
|
num_samples += predictions.size(0)
|
||||||
|
|
||||||
|
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}%')
|
||||||
|
|
||||||
|
|
||||||
trainer = pl.Trainer(accelerator='gpu', devices=1, auto_scale_batch_size=True, callbacks=[EarlyStopping('val_loss')], max_epochs=NUM_EPOCHS)
|
def check_accuracy_data():
|
||||||
|
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
|
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
|
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
||||||
|
test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
|
print("Accuracy of train_set:")
|
||||||
|
check_accuracy(train_loader)
|
||||||
|
print("Accuracy of test_set:")
|
||||||
|
check_accuracy(test_loader)
|
||||||
|
|
||||||
|
#CNN = NeuralNetwork()
|
||||||
|
#common.helpers.createCSV()
|
||||||
|
|
||||||
|
#trainer = pl.Trainer(accelerator='gpu', callbacks=EarlyStopping('val_loss'), devices=1, max_epochs=NUM_EPOCHS)
|
||||||
#trainer = pl.Trainer(accelerator='gpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
|
#trainer = pl.Trainer(accelerator='gpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
|
||||||
|
|
||||||
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
#trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
#testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
#train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
||||||
test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
|
#test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
#trainer.fit(CNN, train_loader, test_loader)
|
#trainer.fit(CNN, train_loader, test_loader)
|
||||||
#trainer.tune(CNN, train_loader, test_loader)
|
#trainer.tune(CNN, train_loader, test_loader)
|
||||||
check_accuracy_tiles()
|
|
||||||
print(what_is_it('../../resources/textures/sand.png', True))
|
|
||||||
|
#print(what_is_it('../../resources/textures/grass2.png', True))
|
||||||
|
|
||||||
|
#check_accuracy_data()
|
||||||
|
|
||||||
|
#check_accuracy_tiles()
|
||||||
|
@ -3,6 +3,7 @@ from torch.utils.data import Dataset
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from torchvision.io import read_image, ImageReadMode
|
from torchvision.io import read_image, ImageReadMode
|
||||||
from common.helpers import createCSV
|
from common.helpers import createCSV
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
class WaterSandTreeGrass(Dataset):
|
class WaterSandTreeGrass(Dataset):
|
||||||
@ -15,7 +16,8 @@ class WaterSandTreeGrass(Dataset):
|
|||||||
return len(self.img_labels)
|
return len(self.img_labels)
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
image = read_image(self.img_labels.iloc[idx, 0], mode=ImageReadMode.RGB)
|
image = Image.open(self.img_labels.iloc[idx, 0]).convert('RGB')
|
||||||
|
|
||||||
label = torch.tensor(int(self.img_labels.iloc[idx, 1]))
|
label = torch.tensor(int(self.img_labels.iloc[idx, 1]))
|
||||||
|
|
||||||
if self.transform:
|
if self.transform:
|
||||||
|
@ -77,19 +77,17 @@ BAR_HEIGHT_MULTIPLIER = 0.1
|
|||||||
|
|
||||||
|
|
||||||
#NEURAL_NETWORK
|
#NEURAL_NETWORK
|
||||||
LEARNING_RATE = 0.13182567385564073
|
LEARNING_RATE = 0.000630957344480193
|
||||||
BATCH_SIZE = 64
|
BATCH_SIZE = 64
|
||||||
NUM_EPOCHS = 50
|
NUM_EPOCHS = 9
|
||||||
|
|
||||||
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||||
print("Using ", DEVICE)
|
print("Using ", DEVICE)
|
||||||
CLASSES = ['grass', 'sand', 'tree', 'water']
|
CLASSES = ['grass', 'sand', 'tree', 'water']
|
||||||
|
|
||||||
SETUP_PHOTOS = transforms.Compose([
|
SETUP_PHOTOS = transforms.Compose([
|
||||||
transforms.Resize(36),
|
|
||||||
transforms.CenterCrop(36),
|
|
||||||
transforms.ToPILImage(),
|
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
|
transforms.Resize((36, 36)),
|
||||||
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
||||||
])
|
])
|
||||||
|
|
||||||
|