diff --git a/Jenkinsfile b/Jenkinsfile index 44578e6..24221b5 100644 --- a/Jenkinsfile +++ b/Jenkinsfile @@ -48,5 +48,16 @@ pipeline { } } } + stage('Experiments') { + steps { + script { + def customImage = docker.build("custom-image") + customImage.inside { + sh 'python3 ./sacred_model.py' + archiveArtifacts artifacts: 'experiments', onlyIfSuccessful: true + } + } + } + } } } \ No newline at end of file diff --git a/sacred_model.py b/sacred_model.py new file mode 100644 index 0000000..58d9445 --- /dev/null +++ b/sacred_model.py @@ -0,0 +1,126 @@ +import torch +import torch.nn as nn +import torch.optim as optim +from torch.utils.data import DataLoader, Dataset +import pandas as pd +from sklearn.model_selection import train_test_split +from sklearn.preprocessing import LabelEncoder +import torch.nn.functional as F +from sacred import Experiment +from sacred.observers import FileStorageObserver, MongoObserver + + +device = ( + "cuda" + if torch.cuda.is_available() + else "cpu" +) + +ex = Experiment("464914", interactive=True, save_git_info=False) +ex.observers.append(FileStorageObserver('experiments')) +ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017', + db_name='sacred')) + +class Model(nn.Module): + def __init__(self, input_features=54, hidden_layer1=25, hidden_layer2=30, output_features=8): + super().__init__() + self.fc1 = nn.Linear(input_features,output_features) + self.bn1 = nn.BatchNorm1d(hidden_layer1) # Add batch normalization + self.fc2 = nn.Linear(hidden_layer1, hidden_layer2) + self.bn2 = nn.BatchNorm1d(hidden_layer2) # Add batch normalization + self.out = nn.Linear(hidden_layer2, output_features) + + def forward(self, x): + x = F.relu(self.fc1(x)) # Apply batch normalization after first linear layer + #x = F.relu(self.bn2(self.fc2(x))) # Apply batch normalization after second linear layer + #x = self.out(x) + return x + +@ex.capture +def capture_params(epochs): + print(f"epochs: {epochs}") + +@ex.main +def main(_run): + forest_train_ex = ex.open_resource('forest_train.csv') + forest_val_ex = ex.open_resource('forest_val.csv') + + forest_val = pd.read_csv('forest_val.csv') + forest_train = pd.read_csv('forest_train.csv') + + X_train = forest_train.drop(columns=['Cover_Type']).values + y_train = forest_train['Cover_Type'].values + + X_val = forest_val.drop(columns=['Cover_Type']).values + y_val = forest_val['Cover_Type'].values + + + # Initialize model, loss function, and optimizer + model = Model().to(device) + criterion = nn.CrossEntropyLoss() + optimizer = optim.Adam(model.parameters(), lr=0.001) + + # Convert to PyTorch tensors + X_train = torch.tensor(X_train, dtype=torch.float32).to(device) + y_train = torch.tensor(y_train, dtype=torch.long).to(device) + X_val = torch.tensor(X_val, dtype=torch.float32).to(device) + y_val = torch.tensor(y_val, dtype=torch.long).to(device) + + # Create DataLoader + train_loader = DataLoader(list(zip(X_train, y_train)), batch_size=64, shuffle=True) + val_loader = DataLoader(list(zip(X_val, y_val)), batch_size=64) + + # Training loop + epochs = 10 + for epoch in range(epochs): + model.train() # Set model to training mode + running_loss = 0.0 + for inputs, labels in train_loader: + inputs, labels = inputs.to(device), labels.to(device) + + optimizer.zero_grad() + + outputs = model(inputs) + loss = criterion(outputs, labels) + loss.backward() + optimizer.step() + + running_loss += loss.item() * inputs.size(0) + + # Calculate training loss + epoch_loss = running_loss / len(train_loader.dataset) + + # Validation + model.eval() # Set model to evaluation mode + val_running_loss = 0.0 + correct = 0 + total = 0 + with torch.no_grad(): + for inputs, labels in val_loader: + inputs, labels = inputs.to(device), labels.to(device) + + outputs = model(inputs) + val_loss = criterion(outputs, labels) + val_running_loss += val_loss.item() * inputs.size(0) + + _, predicted = torch.max(outputs, 1) + total += labels.size(0) + correct += (predicted == labels).sum().item() + + # Calculate validation loss and accuracy + val_epoch_loss = val_running_loss / len(val_loader.dataset) + val_accuracy = correct / total + + print(f"Epoch {epoch+1}/{epochs}, " + f"Train Loss: {epoch_loss:.4f}, " + f"Val Loss: {val_epoch_loss:.4f}, " + f"Val Accuracy: {val_accuracy:.4f}") + _run.log_scalar("train loss", epoch_loss) + _run.log_scalar("val loss", val_epoch_loss) + + + capture_params(epochs) + torch.save(model.state_dict(), 'model.pth') + ex.add_artifact("model.pth") + +ex.run() \ No newline at end of file