Compare commits

...

12 Commits
model ... main

Author SHA1 Message Date
Alicja Szulecka
40d0c3e849 IUM_9 2024-05-28 21:52:31 +02:00
Alicja Szulecka
0f254aa5fa Create dvc.yaml 2024-05-28 21:43:31 +02:00
Alicja Szulecka
abb213675e Update config 2024-05-28 21:34:33 +02:00
Alicja Szulecka
3cbfc6aca1 Delete IUM_2-checkpoint.ipynb 2024-05-28 21:26:27 +02:00
Alicja Szulecka
80ebb3c0da dvc 2024-05-28 21:22:43 +02:00
Alicja Szulecka
281c3c6a86 sacredboard 2024-05-28 21:22:26 +02:00
Alicja Szulecka
ae632b1ea3 stop tracking covtype.csv 2024-05-28 21:20:04 +02:00
Alicja Szulecka
7309d49e67 Delete conda,yaml 2024-05-06 22:08:57 +02:00
Alicja Szulecka
c4ce89938c mlflow 2024-05-06 22:08:05 +02:00
Alicja Szulecka
ed9927d7a1 mlflow 2024-05-06 17:27:28 +02:00
Alicja Szulecka
8ab682be76 Update Dockerfile 2024-05-05 14:12:55 +02:00
Alicja Szulecka
7ff2f9711e sacred 2024-05-05 14:07:27 +02:00
18 changed files with 625 additions and 581109 deletions

3
.dvc/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
/config.local
/tmp
/cache

4
.dvc/config Normal file
View File

@ -0,0 +1,4 @@
[core]
remote = ium_ssh_remote
['remote "ium_ssh_remote"']
url = ssh://ium-sftp@tzietkiewicz.vm.wmi.amu.edu.pl

3
.dvcignore Normal file
View File

@ -0,0 +1,3 @@
# Add patterns of files dvc should ignore, which could improve
# the performance. Learn more at
# https://dvc.org/doc/user-guide/dvcignore

5
.env Normal file
View File

@ -0,0 +1,5 @@
MONGO_INITDB_ROOT_USERNAME=admin
MONGO_INITDB_ROOT_PASSWORD=IUM_2021
ME_CONFIG_BASICAUTH_USERNAME=mongo_express_user
ME_CONFIG_BASICAUTH_PASSWORD=mongo_express_pw
MONGO_DATABASE=sacred

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/covtype.csv

View File

@ -1,95 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --user kaggle \n",
"%pip install --user pandas"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"ERROR: Could not find a version that satisfies the requirement git (from versions: none)\n",
"ERROR: No matching distribution found for git\n",
"\n",
"[notice] A new release of pip is available: 23.1.2 -> 24.0\n",
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
]
}
],
"source": [
"%pip install git"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!kaggle datasets download -d nasa/meteorite-landings"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"!tar -xf meteorite-landings.zip"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -4,7 +4,7 @@ RUN apt update && apt install -y python3-pip
RUN apt install unzip
RUN apt install bc
RUN pip3 install kaggle pandas scikit-learn torch
RUN pip3 install kaggle pandas scikit-learn torch sacred pymongo
WORKDIR /app

11
Jenkinsfile vendored
View File

@ -48,5 +48,16 @@ pipeline {
}
}
}
stage('Experiments') {
steps {
script {
def customImage = docker.build("custom-image")
customImage.inside {
sh 'python3 ./sacred_model.py'
archiveArtifacts artifacts: 'experiments', onlyIfSuccessful: true
}
}
}
}
}
}

581013
covtype.csv

File diff suppressed because it is too large Load Diff

5
covtype.csv.dvc Normal file
View File

@ -0,0 +1,5 @@
outs:
- md5: e88c3c209db2e8982e07c43462d67c87
size: 75170064
hash: md5
path: covtype.csv

29
dvc.yaml Normal file
View File

@ -0,0 +1,29 @@
stages:
prepare_data:
cmd: python ./IUM_2.py
deps:
- create-dataset.py
- covtype.csv
outs:
- forest_train.csv
- forest_test.csv
- forest_val.csv
train_model:
cmd: python ./model.py
deps:
- model.py
- forest_train.csv
- forest_test.csv
- forest_val.csv
outs:
- model.pth
evaluate_model:
cmd: python ./prediction.py
deps:
- prediction.py
- model.pth
- forest_test.csv
outs:
- predictions.txt

189
environment.yml Normal file
View File

@ -0,0 +1,189 @@
name: IUM
channels:
- defaults
dependencies:
- _tflow_select=2.3.0=mkl
- abseil-cpp=20211102.0=hd77b12b_0
- absl-py=2.1.0=py310haa95532_0
- aiohttp=3.9.5=py310h2bbff1b_0
- aiosignal=1.2.0=pyhd3eb1b0_0
- alembic=1.8.1=py310haa95532_0
- aniso8601=9.0.1=pyhd3eb1b0_0
- arrow-cpp=11.0.0=h2c9b28c_2
- astunparse=1.6.3=py_0
- async-timeout=4.0.3=py310haa95532_0
- attrs=23.1.0=py310haa95532_0
- aws-c-common=0.4.57=ha925a31_1
- aws-c-event-stream=0.1.6=hd77b12b_5
- aws-checksums=0.1.9=ha925a31_0
- aws-sdk-cpp=1.8.185=hd77b12b_0
- bcrypt=3.2.0=py310h2bbff1b_1
- blas=1.0=mkl
- blinker=1.6.2=py310haa95532_0
- boost-cpp=1.82.0=h59b6b97_2
- bottleneck=1.3.7=py310h9128911_0
- brotli=1.0.9=h2bbff1b_8
- brotli-bin=1.0.9=h2bbff1b_8
- brotli-python=1.0.9=py310hd77b12b_8
- bzip2=1.0.8=h2bbff1b_6
- c-ares=1.19.1=h2bbff1b_0
- ca-certificates=2024.3.11=haa95532_0
- cachetools=5.3.3=py310haa95532_0
- certifi=2024.2.2=py310haa95532_0
- cffi=1.16.0=py310h2bbff1b_1
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- click=8.1.7=py310haa95532_0
- cloudpickle=2.2.1=py310haa95532_0
- colorama=0.4.6=py310haa95532_0
- contourpy=1.2.0=py310h59b6b97_0
- cryptography=41.0.3=py310h3438e0d_0
- cycler=0.11.0=pyhd3eb1b0_0
- docker-py=7.0.0=py310haa95532_0
- entrypoints=0.4=py310haa95532_0
- flask=2.2.5=py310haa95532_0
- flatbuffers=2.0.0=h6c2663c_0
- fonttools=4.51.0=py310h2bbff1b_0
- freetype=2.12.1=ha860e81_0
- frozenlist=1.4.0=py310h2bbff1b_0
- gast=0.4.0=pyhd3eb1b0_0
- gflags=2.2.2=hd77b12b_1
- giflib=5.2.1=h8cc25b3_3
- gitdb=4.0.7=pyhd3eb1b0_0
- gitpython=3.1.37=py310haa95532_0
- glog=0.5.0=hd77b12b_1
- google-auth=2.29.0=py310haa95532_0
- google-auth-oauthlib=0.4.4=pyhd3eb1b0_0
- google-pasta=0.2.0=pyhd3eb1b0_0
- graphene=3.3=py310haa95532_0
- graphql-core=3.2.3=py310haa95532_1
- graphql-relay=3.2.0=py310haa95532_0
- greenlet=3.0.1=py310hd77b12b_0
- grpc-cpp=1.48.2=hf108199_0
- grpcio=1.48.2=py310hf108199_0
- h5py=3.11.0=py310hed405ee_0
- hdf5=1.12.1=h51c971a_3
- icc_rt=2022.1.0=h6049295_2
- icu=58.2=ha925a31_3
- idna=3.7=py310haa95532_0
- importlib-metadata=7.0.1=py310haa95532_0
- intel-openmp=2023.1.0=h59b6b97_46320
- itsdangerous=2.0.1=pyhd3eb1b0_0
- jinja2=3.1.3=py310haa95532_0
- joblib=1.4.0=py310haa95532_0
- jpeg=9e=h2bbff1b_1
- keras=2.10.0=py310haa95532_0
- keras-preprocessing=1.1.2=pyhd3eb1b0_0
- kiwisolver=1.4.4=py310hd77b12b_0
- krb5=1.20.1=h5b6d351_1
- lcms2=2.12=h83e58a3_0
- lerc=3.0=hd77b12b_0
- libboost=1.82.0=h3399ecb_2
- libbrotlicommon=1.0.9=h2bbff1b_8
- libbrotlidec=1.0.9=h2bbff1b_8
- libbrotlienc=1.0.9=h2bbff1b_8
- libclang=14.0.6=default_hb5a9fac_1
- libclang13=14.0.6=default_h8e68704_1
- libcurl=8.7.1=h86230a5_0
- libdeflate=1.17=h2bbff1b_1
- libevent=2.1.12=hcc03200_0
- libffi=3.4.4=hd77b12b_1
- libpng=1.6.39=h8cc25b3_0
- libpq=12.15=hb652d5d_1
- libprotobuf=3.20.3=h23ce68f_0
- libssh2=1.10.0=hcd4344a_2
- libthrift=0.15.0=he49ee6e_2
- libtiff=4.5.1=hd77b12b_0
- libwebp-base=1.3.2=h2bbff1b_0
- lz4-c=1.9.4=h2bbff1b_1
- mako=1.2.3=py310haa95532_0
- markdown=3.4.1=py310haa95532_0
- markupsafe=2.1.3=py310h2bbff1b_0
- matplotlib=3.8.4=py310haa95532_0
- matplotlib-base=3.8.4=py310h4ed8f06_0
- mkl=2023.1.0=h6b88ed4_46358
- mkl-service=2.4.0=py310h2bbff1b_1
- mkl_fft=1.3.8=py310h2bbff1b_0
- mkl_random=1.2.4=py310h59b6b97_0
- mlflow=2.12.2=py310hd1fac3c_0
- multidict=6.0.4=py310h2bbff1b_0
- numexpr=2.8.7=py310h2cd9be0_0
- numpy=1.26.4=py310h055cbcc_0
- numpy-base=1.26.4=py310h65a83cf_0
- oauthlib=3.2.2=py310haa95532_0
- openjpeg=2.4.0=h4fc8c34_0
- openssl=1.1.1w=h2bbff1b_0
- opt_einsum=3.3.0=pyhd3eb1b0_1
- orc=1.7.4=h623e30f_1
- packaging=23.2=py310haa95532_0
- pandas=2.2.1=py310h5da7b33_0
- paramiko=2.8.1=pyhd3eb1b0_0
- pillow=10.3.0=py310h2bbff1b_0
- pip=24.0=py310haa95532_0
- ply=3.11=py310haa95532_0
- protobuf=3.20.3=py310hd77b12b_0
- pyarrow=11.0.0=py310h790e06d_1
- pyasn1=0.4.8=pyhd3eb1b0_0
- pyasn1-modules=0.2.8=py_0
- pybind11-abi=5=hd3eb1b0_0
- pycparser=2.21=pyhd3eb1b0_0
- pyjwt=2.8.0=py310haa95532_0
- pynacl=1.5.0=py310h8cc25b3_0
- pyopenssl=23.2.0=py310haa95532_0
- pyqt=5.15.10=py310hd77b12b_0
- pyqt5-sip=12.13.0=py310h2bbff1b_0
- pysocks=1.7.1=py310haa95532_0
- python=3.10.13=h966fe2a_0
- python-dateutil=2.9.0post0=py310haa95532_0
- python-flatbuffers=2.0=pyhd3eb1b0_0
- python-tzdata=2023.3=pyhd3eb1b0_0
- pytz=2024.1=py310haa95532_0
- pywin32=305=py310h2bbff1b_0
- pyyaml=6.0.1=py310h2bbff1b_0
- qt-main=5.15.2=h6072711_9
- querystring_parser=1.2.4=py310haa95532_0
- re2=2022.04.01=hd77b12b_0
- requests=2.31.0=py310haa95532_1
- requests-oauthlib=1.3.0=py_0
- rsa=4.7.2=pyhd3eb1b0_1
- scikit-learn=1.4.2=py310h4ed8f06_1
- scipy=1.13.0=py310h8640f81_0
- setuptools=69.5.1=py310haa95532_0
- sip=6.7.12=py310hd77b12b_0
- six=1.16.0=pyhd3eb1b0_1
- smmap=4.0.0=pyhd3eb1b0_0
- snappy=1.1.10=h6c2663c_1
- sqlalchemy=2.0.25=py310h2bbff1b_0
- sqlite=3.45.3=h2bbff1b_0
- sqlparse=0.4.4=py310haa95532_0
- tbb=2021.8.0=h59b6b97_0
- tensorboard=2.10.0=py310haa95532_0
- tensorboard-data-server=0.6.1=py310haa95532_0
- tensorboard-plugin-wit=1.8.1=py310haa95532_0
- tensorflow=2.10.0=mkl_py310hd99672f_0
- tensorflow-base=2.10.0=mkl_py310h6a7f48e_0
- tensorflow-estimator=2.10.0=py310haa95532_0
- termcolor=2.1.0=py310haa95532_0
- threadpoolctl=2.2.0=pyh0d69192_0
- tk=8.6.14=h0416ee5_0
- tornado=6.3.3=py310h2bbff1b_0
- typing-extensions=4.11.0=py310haa95532_0
- typing_extensions=4.11.0=py310haa95532_0
- tzdata=2024a=h04d1e81_0
- unicodedata2=15.1.0=py310h2bbff1b_0
- urllib3=2.2.1=py310haa95532_0
- utf8proc=2.6.1=h2bbff1b_1
- vc=14.2=h2eaa2aa_1
- vs2015_runtime=14.29.30133=h43f2093_3
- waitress=2.0.0=pyhd3eb1b0_0
- websocket-client=1.8.0=py310haa95532_0
- werkzeug=2.3.8=py310haa95532_0
- wheel=0.43.0=py310haa95532_0
- win_inet_pton=1.1.0=py310haa95532_0
- wrapt=1.14.1=py310h2bbff1b_0
- xz=5.4.6=h8cc25b3_1
- yaml=0.2.5=he774522_0
- yarl=1.9.3=py310h2bbff1b_0
- zipp=3.17.0=py310haa95532_0
- zlib=1.2.13=h8cc25b3_1
- zstd=1.5.5=hd43e919_2
prefix: C:\Users\Genos\miniconda3\envs\IUM

15
mlflow/Dockerfile Normal file
View File

@ -0,0 +1,15 @@
FROM python:3.10
RUN pip install --upgrade pip
RUN pip3 install mlflow
RUN pip3 install scikit-learn
RUN pip3 install pandas
RUN pip3 install numpy
RUN pip3 install torch
COPY mlflow_model.py .
COPY mlflow_prediction.py .
COPY forest_test.csv .
COPY forest_train.csv .
COPY forest_val.csv .

13
mlflow/MLProject Normal file
View File

@ -0,0 +1,13 @@
name: mlflow_464914
# conda_env: conda.yaml #ścieżka do pliku conda.yaml z definicją środowisk
docker_env:
image: mlflow_image
entry_points:
main:
parameters:
epochs: {type: int, default: 10}
command: "python mlflow_model.py {epochs}"
test:
command: "python mlflow_prediction.py"

120
mlflow/mlflow_model.py Normal file
View File

@ -0,0 +1,120 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import torch.nn.functional as F
import mlflow
import mlflow.sklearn
import sys
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("s464914")
device = (
"cuda"
if torch.cuda.is_available()
else "cpu"
)
class Model(nn.Module):
def __init__(self, input_features=54, hidden_layer1=25, hidden_layer2=30, output_features=8):
super().__init__()
self.fc1 = nn.Linear(input_features,output_features)
self.bn1 = nn.BatchNorm1d(hidden_layer1) # Add batch normalization
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
self.bn2 = nn.BatchNorm1d(hidden_layer2) # Add batch normalization
self.out = nn.Linear(hidden_layer2, output_features)
def forward(self, x):
x = F.relu(self.fc1(x)) # Apply batch normalization after first linear layer
#x = F.relu(self.bn2(self.fc2(x))) # Apply batch normalization after second linear layer
#x = self.out(x)
return x
def main():
epochs = int(sys.argv[1])
forest_train = pd.read_csv('forest_train.csv')
forest_val = pd.read_csv('forest_val.csv')
print(forest_train.head())
X_train = forest_train.drop(columns=['Cover_Type']).values
y_train = forest_train['Cover_Type'].values
X_val = forest_val.drop(columns=['Cover_Type']).values
y_val = forest_val['Cover_Type'].values
# Initialize model, loss function, and optimizer
model = Model().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Convert to PyTorch tensors
X_train = torch.tensor(X_train, dtype=torch.float32).to(device)
y_train = torch.tensor(y_train, dtype=torch.long).to(device)
X_val = torch.tensor(X_val, dtype=torch.float32).to(device)
y_val = torch.tensor(y_val, dtype=torch.long).to(device)
# Create DataLoader
train_loader = DataLoader(list(zip(X_train, y_train)), batch_size=64, shuffle=True)
val_loader = DataLoader(list(zip(X_val, y_val)), batch_size=64)
with mlflow.start_run() as run:
# Training loop
for epoch in range(epochs):
model.train() # Set model to training mode
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
# Calculate training loss
epoch_loss = running_loss / len(train_loader.dataset)
# Validation
model.eval() # Set model to evaluation mode
val_running_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
val_loss = criterion(outputs, labels)
val_running_loss += val_loss.item() * inputs.size(0)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Calculate validation loss and accuracy
val_epoch_loss = val_running_loss / len(val_loader.dataset)
val_accuracy = correct / total
print(f"Epoch {epoch+1}/{epochs}, "
f"Train Loss: {epoch_loss:.4f}, "
f"Val Loss: {val_epoch_loss:.4f}, "
f"Val Accuracy: {val_accuracy:.4f}")
torch.save(model.state_dict(), 'model.pth')
mlflow.log_param("epochs", epochs)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,95 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import torch.nn.functional as F
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_squared_error
import numpy as np
import mlflow
import mlflow.sklearn
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("s464914")
device = (
"cuda"
if torch.cuda.is_available()
else "cpu"
)
class Model(nn.Module):
def __init__(self, input_features=54, hidden_layer1=25, hidden_layer2=30, output_features=8):
super().__init__()
self.fc1 = nn.Linear(input_features,output_features)
self.bn1 = nn.BatchNorm1d(hidden_layer1) # Add batch normalization
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
self.bn2 = nn.BatchNorm1d(hidden_layer2) # Add batch normalization
self.out = nn.Linear(hidden_layer2, output_features)
def forward(self, x):
x = F.relu(self.fc1(x))
return x
def load_model(model, model_path):
model.load_state_dict(torch.load(model_path))
model.eval()
def predict(model, input_data):
# Convert input data to PyTorch tensor
# Perform forward pass
with torch.no_grad():
output = model(input_data)
_, predicted_class = torch.max(output, 0)
return predicted_class.item() # Return the predicted class label
def main():
with mlflow.start_run() as run:
forest_test = pd.read_csv('forest_test.csv')
X_test = forest_test.drop(columns=['Cover_Type']).values
y_test = forest_test['Cover_Type'].values
X_test = torch.tensor(X_test, dtype=torch.float32).to(device)
model = Model().to(device)
model_path = 'model.pth' # Path to your saved model file
load_model(model, model_path)
predictions = []
true_labels = []
with torch.no_grad():
for input_data, target in zip(X_test, y_test):
output = model(input_data)
_, predicted_class = torch.max(output, 0)
prediction_entry = f"predicted: {predicted_class.item()} true_label: {target}"
predictions.append(prediction_entry)
true_labels.append()
if predicted_class.item() == target:
true_labels.append(target)
with open(r'predictions.txt', 'w') as fp:
for item in predictions:
# write each item on a new line
fp.write("%s\n" % item)
accuracy = accuracy_score(true_labels, predictions)
precision_micro = precision_score(true_labels, predictions, average='micro')
recall_micro = recall_score(true_labels, predictions, average='micro')
f1_micro = f1_score(true_labels, predictions, average='micro')
rmse = np.sqrt(mean_squared_error(true_labels, predictions))
mlflow.log_metric("accuracy", accuracy)
mlflow.log_metric("precision_micro", precision_micro)
mlflow.log_metric("recall_micro", recall_micro)
mlflow.log_metric("f1_micro", f1_micro)
mlflow.log_metric("rmse", rmse)
if __name__ == "__main__":
main()

126
sacred_model.py Normal file
View File

@ -0,0 +1,126 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import torch.nn.functional as F
from sacred import Experiment
from sacred.observers import FileStorageObserver, MongoObserver
device = (
"cuda"
if torch.cuda.is_available()
else "cpu"
)
ex = Experiment("464914", interactive=True, save_git_info=False)
ex.observers.append(FileStorageObserver('experiments'))
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017',
db_name='sacred'))
class Model(nn.Module):
def __init__(self, input_features=54, hidden_layer1=25, hidden_layer2=30, output_features=8):
super().__init__()
self.fc1 = nn.Linear(input_features,output_features)
self.bn1 = nn.BatchNorm1d(hidden_layer1) # Add batch normalization
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
self.bn2 = nn.BatchNorm1d(hidden_layer2) # Add batch normalization
self.out = nn.Linear(hidden_layer2, output_features)
def forward(self, x):
x = F.relu(self.fc1(x)) # Apply batch normalization after first linear layer
#x = F.relu(self.bn2(self.fc2(x))) # Apply batch normalization after second linear layer
#x = self.out(x)
return x
@ex.capture
def capture_params(epochs):
print(f"epochs: {epochs}")
@ex.main
def main(_run):
forest_train_ex = ex.open_resource('forest_train.csv')
forest_val_ex = ex.open_resource('forest_val.csv')
forest_val = pd.read_csv('forest_val.csv')
forest_train = pd.read_csv('forest_train.csv')
X_train = forest_train.drop(columns=['Cover_Type']).values
y_train = forest_train['Cover_Type'].values
X_val = forest_val.drop(columns=['Cover_Type']).values
y_val = forest_val['Cover_Type'].values
# Initialize model, loss function, and optimizer
model = Model().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Convert to PyTorch tensors
X_train = torch.tensor(X_train, dtype=torch.float32).to(device)
y_train = torch.tensor(y_train, dtype=torch.long).to(device)
X_val = torch.tensor(X_val, dtype=torch.float32).to(device)
y_val = torch.tensor(y_val, dtype=torch.long).to(device)
# Create DataLoader
train_loader = DataLoader(list(zip(X_train, y_train)), batch_size=64, shuffle=True)
val_loader = DataLoader(list(zip(X_val, y_val)), batch_size=64)
# Training loop
epochs = 10
for epoch in range(epochs):
model.train() # Set model to training mode
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
# Calculate training loss
epoch_loss = running_loss / len(train_loader.dataset)
# Validation
model.eval() # Set model to evaluation mode
val_running_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
val_loss = criterion(outputs, labels)
val_running_loss += val_loss.item() * inputs.size(0)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Calculate validation loss and accuracy
val_epoch_loss = val_running_loss / len(val_loader.dataset)
val_accuracy = correct / total
print(f"Epoch {epoch+1}/{epochs}, "
f"Train Loss: {epoch_loss:.4f}, "
f"Val Loss: {val_epoch_loss:.4f}, "
f"Val Accuracy: {val_accuracy:.4f}")
_run.log_scalar("train loss", epoch_loss)
_run.log_scalar("val loss", val_epoch_loss)
capture_params(epochs)
torch.save(model.state_dict(), 'model.pth')
ex.add_artifact("model.pth")
ex.run()

5
sacredboard/Dockerfile Normal file
View File

@ -0,0 +1,5 @@
FROM python:3.6-jessie
RUN pip install https://github.com/chovanecm/sacredboard/archive/develop.zip
ENTRYPOINT sacredboard -mu mongodb://$MONGO_INITDB_ROOT_USERNAME:$MONGO_INITDB_ROOT_PASSWORD@mongo:27017/?authMechanism=SCRAM-SHA-1 $MONGO_DATABASE