import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import torch.nn.functional as F device = ( "cuda" if torch.cuda.is_available() else "cpu" ) class Model(nn.Module): def __init__(self, input_features=54, hidden_layer1=25, hidden_layer2=30, output_features=8): super().__init__() self.fc1 = nn.Linear(input_features,output_features) self.bn1 = nn.BatchNorm1d(hidden_layer1) # Add batch normalization self.fc2 = nn.Linear(hidden_layer1, hidden_layer2) self.bn2 = nn.BatchNorm1d(hidden_layer2) # Add batch normalization self.out = nn.Linear(hidden_layer2, output_features) def forward(self, x): x = F.relu(self.fc1(x)) return x def load_model(model, model_path): model.load_state_dict(torch.load(model_path)) model.eval() def predict(model, input_data): # Convert input data to PyTorch tensor # Perform forward pass with torch.no_grad(): output = model(input_data) _, predicted_class = torch.max(output, 0) return predicted_class.item() # Return the predicted class label def main(): forest_test = pd.read_csv('forest_test.csv') X_test = forest_test.drop(columns=['Cover_Type']).values y_test = forest_test['Cover_Type'].values X_test = torch.tensor(X_test, dtype=torch.float32).to(device) model = Model().to(device) model_path = 'model.pth' # Path to your saved model file load_model(model, model_path) predictions = [] for input_data in X_test: predicted_class = predict(model, input_data) predictions.append(predicted_class) with open(r'predictions.txt', 'w') as fp: for item in predictions: # write each item on a new line fp.write("%s\n" % item) if __name__ == "__main__": main()