IUM_08
This commit is contained in:
parent
234be6c972
commit
75a3a6e6c7
12
mlflow/MLProject
Normal file
12
mlflow/MLProject
Normal file
@ -0,0 +1,12 @@
|
||||
name: Car Price Prediction
|
||||
|
||||
conda_env: conda.yaml
|
||||
|
||||
entry_points:
|
||||
main:
|
||||
parameters:
|
||||
epochs: {type: int, default: 20}
|
||||
batch_size: {type: int, default: 32}
|
||||
command: "python mlflow_model.py {epochs} {batch_size}"
|
||||
predict:
|
||||
command: "python mlflow_predict.py"
|
13
mlflow/conda.yaml
Normal file
13
mlflow/conda.yaml
Normal file
@ -0,0 +1,13 @@
|
||||
name: car_price_env
|
||||
channels:
|
||||
- default
|
||||
dependencies:
|
||||
- python=3.8
|
||||
- pip:
|
||||
- pip
|
||||
- pandas
|
||||
- numpy
|
||||
- scikit-learn
|
||||
- tensorflow
|
||||
- mlflow
|
||||
- h5py
|
39
mlflow/mlflow_model.py
Normal file
39
mlflow/mlflow_model.py
Normal file
@ -0,0 +1,39 @@
|
||||
import mlflow
|
||||
import mlflow.keras
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from tensorflow.keras import Sequential
|
||||
from tensorflow.keras.layers import Dense
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
import sys
|
||||
|
||||
# Parameters from the command line
|
||||
epochs = int(sys.argv[1])
|
||||
batch_size = int(sys.argv[2])
|
||||
|
||||
mlflow.start_run()
|
||||
|
||||
train_data = pd.read_csv('./data/car_prices_train.csv')
|
||||
train_data.dropna(inplace=True)
|
||||
y_train = train_data['sellingprice'].astype(np.float32)
|
||||
X_train = train_data[['year', 'condition', 'transmission']]
|
||||
|
||||
scaler_x = MinMaxScaler()
|
||||
X_train['condition'] = scaler_x.fit_transform(X_train[['condition']])
|
||||
|
||||
scaler_y = MinMaxScaler()
|
||||
y_train = scaler_y.fit_transform(y_train.values.reshape(-1, 1))
|
||||
X_train = pd.get_dummies(X_train, columns=['transmission'])
|
||||
|
||||
model = Sequential([Dense(64, activation='relu'), Dense(32, activation='relu'), Dense(1)])
|
||||
model.compile(optimizer='adam', loss='mean_squared_error')
|
||||
|
||||
# Training the model with MLflow tracking
|
||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)
|
||||
|
||||
mlflow.keras.log_model(model, "model")
|
||||
|
||||
mlflow.log_param("epochs", epochs)
|
||||
mlflow.log_param("batch_size", batch_size)
|
||||
|
||||
mlflow.end_run()
|
23
mlflow/mlflow_predict.py
Normal file
23
mlflow/mlflow_predict.py
Normal file
@ -0,0 +1,23 @@
|
||||
import mlflow.keras
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
|
||||
model = mlflow.keras.load_model("model")
|
||||
|
||||
test_data = pd.read_csv('./data/car_prices_test.csv')
|
||||
test_data.dropna(inplace=True)
|
||||
y_test = test_data['sellingprice'].astype(np.float32)
|
||||
X_test = test_data[['year', 'condition', 'transmission']]
|
||||
|
||||
scaler_y = MinMaxScaler()
|
||||
scaler_y.fit(y_test.values.reshape(-1, 1))
|
||||
|
||||
scaler_X = MinMaxScaler()
|
||||
X_test['condition'] = scaler_X.fit_transform(X_test[['condition']])
|
||||
X_test = pd.get_dummies(X_test, columns=['transmission'])
|
||||
|
||||
y_pred_scaled = model.predict(X_test)
|
||||
y_pred = scaler_y.inverse_transform(y_pred_scaled)
|
||||
y_pred_df = pd.DataFrame(y_pred, columns=['PredictedSellingPrice'])
|
||||
y_pred_df.to_csv('predicted_selling_prices.csv', index=False)
|
Loading…
Reference in New Issue
Block a user