import pandas as pd import numpy as np from tensorflow.keras import Sequential import tensorflow as tf from sklearn.preprocessing import MinMaxScaler test_data = pd.read_csv('./data/car_prices_test.csv') test_data.dropna(inplace=True) y_test = test_data['sellingprice'].astype(np.float32) X_test = test_data[['year', 'condition', 'transmission']] scaler_y = MinMaxScaler() scaler_y.fit(y_test.values.reshape(-1, 1)) scaler_X = MinMaxScaler() X_test['condition'] = scaler_X.fit_transform(X_test[['condition']]) X_test = pd.get_dummies(X_test, columns=['transmission']) model = tf.keras.models.load_model('./car_prices_predict_model.h5') y_pred_scaled = model.predict(X_test) y_pred = scaler_y.inverse_transform(y_pred_scaled) y_pred_df = pd.DataFrame(y_pred, columns=['PredictedSellingPrice']) y_pred_df.to_csv('predicted_selling_prices.csv', index=False)