GRK_Room/dependencies/glm/detail/func_matrix.hpp

150 lines
5.3 KiB
C++
Raw Permalink Normal View History

2023-01-14 12:00:59 +01:00
/// @ref core
/// @file glm/detail/func_matrix.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
///
/// @defgroup core_func_matrix Matrix functions
/// @ingroup core
///
/// For each of the following built-in matrix functions, there is both a
/// single-precision floating point version, where all arguments and return values
/// are single precision, and a double-precision floating version, where all
/// arguments and return values are double precision. Only the single-precision
/// floating point version is shown.
#pragma once
// Dependencies
#include "../detail/precision.hpp"
#include "../detail/setup.hpp"
#include "../detail/type_mat.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../mat2x2.hpp"
#include "../mat2x3.hpp"
#include "../mat2x4.hpp"
#include "../mat3x2.hpp"
#include "../mat3x3.hpp"
#include "../mat3x4.hpp"
#include "../mat4x2.hpp"
#include "../mat4x3.hpp"
#include "../mat4x4.hpp"
namespace glm{
namespace detail
{
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec2, tvec2>
{
typedef tmat2x2<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec2, tvec3>
{
typedef tmat3x2<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec2, tvec4>
{
typedef tmat4x2<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec3, tvec2>
{
typedef tmat2x3<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec3, tvec3>
{
typedef tmat3x3<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec3, tvec4>
{
typedef tmat4x3<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec4, tvec2>
{
typedef tmat2x4<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec4, tvec3>
{
typedef tmat3x4<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec4, tvec4>
{
typedef tmat4x4<T, P> type;
};
}//namespace detail
/// @addtogroup core_func_matrix
/// @{
/// Multiply matrix x by matrix y component-wise, i.e.,
/// result[i][j] is the scalar product of x[i][j] and y[i][j].
///
/// @tparam matType Floating-point matrix types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/matrixCompMult.xml">GLSL matrixCompMult man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL matType<T, P> matrixCompMult(matType<T, P> const & x, matType<T, P> const & y);
/// Treats the first parameter c as a column vector
/// and the second parameter r as a row vector
/// and does a linear algebraic matrix multiply c * r.
///
/// @tparam matType Floating-point matrix types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/outerProduct.xml">GLSL outerProduct man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
template <typename T, precision P, template <typename, precision> class vecTypeA, template <typename, precision> class vecTypeB>
GLM_FUNC_DECL typename detail::outerProduct_trait<T, P, vecTypeA, vecTypeB>::type outerProduct(vecTypeA<T, P> const & c, vecTypeB<T, P> const & r);
/// Returns the transposed matrix of x
///
/// @tparam matType Floating-point matrix types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/transpose.xml">GLSL transpose man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
# if((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC11))
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL typename matType<T, P>::transpose_type transpose(matType<T, P> const & x);
# endif
/// Return the determinant of a squared matrix.
///
/// @tparam valType Floating-point scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/determinant.xml">GLSL determinant man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL T determinant(matType<T, P> const & m);
/// Return the inverse of a squared matrix.
///
/// @tparam valType Floating-point scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/inverse.xml">GLSL inverse man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL matType<T, P> inverse(matType<T, P> const & m);
/// @}
}//namespace glm
#include "func_matrix.inl"