183 lines
3.9 KiB
Plaintext
183 lines
3.9 KiB
Plaintext
|
/// @ref gtx_integer
|
||
|
/// @file glm/gtx/integer.inl
|
||
|
|
||
|
namespace glm
|
||
|
{
|
||
|
// pow
|
||
|
GLM_FUNC_QUALIFIER int pow(int x, int y)
|
||
|
{
|
||
|
if(y == 0)
|
||
|
return 1;
|
||
|
int result = x;
|
||
|
for(int i = 1; i < y; ++i)
|
||
|
result *= x;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387
|
||
|
GLM_FUNC_QUALIFIER int sqrt(int x)
|
||
|
{
|
||
|
if(x <= 1) return x;
|
||
|
|
||
|
int NextTrial = x >> 1;
|
||
|
int CurrentAnswer;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
CurrentAnswer = NextTrial;
|
||
|
NextTrial = (NextTrial + x / NextTrial) >> 1;
|
||
|
} while(NextTrial < CurrentAnswer);
|
||
|
|
||
|
return CurrentAnswer;
|
||
|
}
|
||
|
|
||
|
// Henry Gordon Dietz: http://aggregate.org/MAGIC/
|
||
|
namespace detail
|
||
|
{
|
||
|
GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x)
|
||
|
{
|
||
|
/* 32-bit recursive reduction using SWAR...
|
||
|
but first step is mapping 2-bit values
|
||
|
into sum of 2 1-bit values in sneaky way
|
||
|
*/
|
||
|
x -= ((x >> 1) & 0x55555555);
|
||
|
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
|
||
|
x = (((x >> 4) + x) & 0x0f0f0f0f);
|
||
|
x += (x >> 8);
|
||
|
x += (x >> 16);
|
||
|
return(x & 0x0000003f);
|
||
|
}
|
||
|
}//namespace detail
|
||
|
|
||
|
// Henry Gordon Dietz: http://aggregate.org/MAGIC/
|
||
|
/*
|
||
|
GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x)
|
||
|
{
|
||
|
x |= (x >> 1);
|
||
|
x |= (x >> 2);
|
||
|
x |= (x >> 4);
|
||
|
x |= (x >> 8);
|
||
|
x |= (x >> 16);
|
||
|
|
||
|
return _detail::ones32(x) >> 1;
|
||
|
}
|
||
|
*/
|
||
|
// mod
|
||
|
GLM_FUNC_QUALIFIER int mod(int x, int y)
|
||
|
{
|
||
|
return x - y * (x / y);
|
||
|
}
|
||
|
|
||
|
// factorial (!12 max, integer only)
|
||
|
template <typename genType>
|
||
|
GLM_FUNC_QUALIFIER genType factorial(genType const & x)
|
||
|
{
|
||
|
genType Temp = x;
|
||
|
genType Result;
|
||
|
for(Result = 1; Temp > 1; --Temp)
|
||
|
Result *= Temp;
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
template <typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER tvec2<T, P> factorial(
|
||
|
tvec2<T, P> const & x)
|
||
|
{
|
||
|
return tvec2<T, P>(
|
||
|
factorial(x.x),
|
||
|
factorial(x.y));
|
||
|
}
|
||
|
|
||
|
template <typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER tvec3<T, P> factorial(
|
||
|
tvec3<T, P> const & x)
|
||
|
{
|
||
|
return tvec3<T, P>(
|
||
|
factorial(x.x),
|
||
|
factorial(x.y),
|
||
|
factorial(x.z));
|
||
|
}
|
||
|
|
||
|
template <typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER tvec4<T, P> factorial(
|
||
|
tvec4<T, P> const & x)
|
||
|
{
|
||
|
return tvec4<T, P>(
|
||
|
factorial(x.x),
|
||
|
factorial(x.y),
|
||
|
factorial(x.z),
|
||
|
factorial(x.w));
|
||
|
}
|
||
|
|
||
|
GLM_FUNC_QUALIFIER uint pow(uint x, uint y)
|
||
|
{
|
||
|
uint result = x;
|
||
|
for(uint i = 1; i < y; ++i)
|
||
|
result *= x;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
GLM_FUNC_QUALIFIER uint sqrt(uint x)
|
||
|
{
|
||
|
if(x <= 1) return x;
|
||
|
|
||
|
uint NextTrial = x >> 1;
|
||
|
uint CurrentAnswer;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
CurrentAnswer = NextTrial;
|
||
|
NextTrial = (NextTrial + x / NextTrial) >> 1;
|
||
|
} while(NextTrial < CurrentAnswer);
|
||
|
|
||
|
return CurrentAnswer;
|
||
|
}
|
||
|
|
||
|
GLM_FUNC_QUALIFIER uint mod(uint x, uint y)
|
||
|
{
|
||
|
return x - y * (x / y);
|
||
|
}
|
||
|
|
||
|
#if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))
|
||
|
|
||
|
GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x)
|
||
|
{
|
||
|
return 31u - findMSB(x);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
// Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt
|
||
|
GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x)
|
||
|
{
|
||
|
int y, m, n;
|
||
|
|
||
|
y = -int(x >> 16); // If left half of x is 0,
|
||
|
m = (y >> 16) & 16; // set n = 16. If left half
|
||
|
n = 16 - m; // is nonzero, set n = 0 and
|
||
|
x = x >> m; // shift x right 16.
|
||
|
// Now x is of the form 0000xxxx.
|
||
|
y = x - 0x100; // If positions 8-15 are 0,
|
||
|
m = (y >> 16) & 8; // add 8 to n and shift x left 8.
|
||
|
n = n + m;
|
||
|
x = x << m;
|
||
|
|
||
|
y = x - 0x1000; // If positions 12-15 are 0,
|
||
|
m = (y >> 16) & 4; // add 4 to n and shift x left 4.
|
||
|
n = n + m;
|
||
|
x = x << m;
|
||
|
|
||
|
y = x - 0x4000; // If positions 14-15 are 0,
|
||
|
m = (y >> 16) & 2; // add 2 to n and shift x left 2.
|
||
|
n = n + m;
|
||
|
x = x << m;
|
||
|
|
||
|
y = x >> 14; // Set y = 0, 1, 2, or 3.
|
||
|
m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
|
||
|
return unsigned(n + 2 - m);
|
||
|
}
|
||
|
|
||
|
#endif//(GLM_COMPILER)
|
||
|
|
||
|
}//namespace glm
|