Merge pull request 'decision_tree_impl' (#25) from decision_tree_impl into master

Reviewed-on: #25
This commit is contained in:
Dawid Korzępa 2022-05-18 10:05:08 +02:00
commit 7ce2f0cc38
9 changed files with 433 additions and 20 deletions

View File

@ -4,25 +4,15 @@ import heapq
from dataclasses import dataclass, field from dataclasses import dataclass, field
from typing import Tuple, Optional, List from typing import Tuple, Optional, List
from common.constants import ROWS, COLUMNS from common.constants import ROWS, COLUMNS, LEFT, RIGHT, UP, DOWN
from common.helpers import directions
EMPTY_FIELDS = ['s', 'g', ' '] EMPTY_FIELDS = ['s', 'g', ' ']
LEFT = 'LEFT'
RIGHT = 'RIGHT'
UP = 'UP'
DOWN = 'DOWN'
TURN_LEFT = 'TURN_LEFT' TURN_LEFT = 'TURN_LEFT'
TURN_RIGHT = 'TURN_RIGHT' TURN_RIGHT = 'TURN_RIGHT'
FORWARD = 'FORWARD' FORWARD = 'FORWARD'
directions = {
LEFT: (0, -1),
RIGHT: (0, 1),
UP: (-1, 0),
DOWN: (1, 0)
}
@dataclass @dataclass
class State: class State:

View File

@ -67,3 +67,8 @@ ACTION = {
BAR_ANIMATION_SPEED = 1 BAR_ANIMATION_SPEED = 1
BAR_WIDTH_MULTIPLIER = 0.9 # (0;1> BAR_WIDTH_MULTIPLIER = 0.9 # (0;1>
BAR_HEIGHT_MULTIPLIER = 0.1 BAR_HEIGHT_MULTIPLIER = 0.1
LEFT = 'LEFT'
RIGHT = 'RIGHT'
UP = 'UP'
DOWN = 'DOWN'

View File

@ -1,5 +1,16 @@
from typing import Tuple, List
import pygame import pygame
from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE, COLUMNS, ROWS
from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE
from common.constants import ROWS, COLUMNS, LEFT, RIGHT, UP, DOWN
directions = {
LEFT: (0, -1),
RIGHT: (0, 1),
UP: (-1, 0),
DOWN: (1, 0)
}
def draw_text(text, color, surface, x, y, text_size=30, is_bold=False): def draw_text(text, color, surface, x, y, text_size=30, is_bold=False):
@ -45,3 +56,21 @@ def castle_neighbors(map, castle_bottom_right_row, castle_bottom_right_col):
continue continue
neighbors.append((new_col, new_row)) neighbors.append((new_col, new_row))
return neighbors return neighbors
def find_neighbours(grid: List[List[str]], col: int, row: int) -> List[Tuple[int, int]]:
dr = [-1, 1, 0, 0]
dc = [0, 0, -1, 1]
neighbours = []
for i in range(4):
rr = row + dr[i]
cc = col + dc[i]
if rr < 0 or cc < 0: continue
if rr >= ROWS or cc >= COLUMNS: continue
if grid[rr][cc] not in ['g', 's', '.']: continue
neighbours.append((rr, cc))
return neighbours

0
learning/__init__.py Normal file
View File

302
learning/dataset_tree.csv Normal file
View File

@ -0,0 +1,302 @@
tower_dist;mob1_dist;mob2_dist;opp1_dist;opp2_dist;opp3_dist;opp4_dist;agent_hp;tower_hp;mob1_hp;mob2_hp;opp1_hp;opp2_hp;opp3_hp;opp4_hp;goal
24;37;41;19;37;29;20;3;38;13;3;12;9;0;10;tower
1;35;11;38;37;10;34;4;11;15;7;5;0;6;4;tower
7;10;5;41;17;27;19;8;31;14;2;2;7;4;0;mob2
15;3;12;18;9;25;40;8;44;7;5;10;0;5;9;mob1
18;19;21;12;8;13;10;2;44;5;2;9;7;1;10;opp3
19;30;11;34;17;26;13;3;35;4;2;0;12;2;12;mob2
13;17;10;7;9;30;9;2;40;1;5;10;9;12;3;opp4
14;30;21;11;18;21;7;12;28;5;3;4;0;11;0;tower
7;38;7;21;5;25;15;6;14;1;4;12;10;12;8;tower
40;24;41;39;1;9;38;2;12;6;1;1;1;9;11;opp2
41;2;24;15;17;19;3;10;54;6;6;11;1;2;0;mob1
25;42;32;25;6;19;11;12;25;10;3;8;11;4;6;tower
6;19;38;10;32;17;24;5;67;12;3;8;4;10;2;tower
24;35;32;37;10;7;9;4;75;10;7;11;3;12;10;opp2
16;25;11;23;6;35;30;11;71;9;4;8;9;12;0;mob2
37;38;5;22;23;13;25;7;6;3;0;8;12;10;1;mob2
40;42;34;28;34;8;15;1;54;4;5;10;6;9;1;opp4
6;16;2;4;18;27;5;12;73;8;7;10;12;5;11;mob2
9;1;1;18;40;34;20;6;69;12;5;10;6;1;9;mob1
13;22;4;20;25;29;7;7;27;2;1;9;7;1;3;mob2
34;15;39;5;37;23;1;3;15;2;1;1;9;10;5;opp1
38;20;4;22;43;23;22;6;60;6;3;4;4;8;0;mob1
12;31;5;14;23;15;27;1;50;7;2;6;8;6;3;mob2
14;37;2;25;23;26;8;4;53;10;0;12;9;9;11;mob2
33;8;22;35;42;21;21;8;68;6;6;6;6;7;6;mob1
17;11;7;25;6;16;8;5;52;7;7;0;11;2;2;mob2
28;12;20;3;7;32;28;12;74;0;6;0;5;12;9;opp2
21;9;10;38;1;40;41;1;61;3;5;9;7;9;2;opp2
16;1;39;36;7;36;17;1;37;2;6;10;2;7;4;opp2
22;15;31;27;3;40;26;9;71;1;0;10;9;5;9;mob1
27;26;25;9;13;7;27;2;2;9;4;1;1;3;10;opp1
28;43;18;15;21;16;18;3;51;3;4;10;0;5;0;mob2
41;8;4;4;6;11;23;12;54;14;5;6;9;8;0;mob2
15;34;12;17;18;15;19;1;75;5;4;5;1;1;7;opp3
42;36;1;3;28;24;28;2;54;13;3;6;7;11;7;mob2
25;22;23;34;8;42;14;9;40;14;5;2;1;7;12;opp2
41;14;7;43;15;26;19;4;16;3;0;9;12;1;7;mob1
18;40;1;40;38;10;5;2;54;14;4;11;2;11;9;mob2
14;35;5;3;5;43;37;3;23;2;1;10;9;11;8;mob2
40;10;23;25;33;37;26;1;42;14;6;2;11;5;6;mob1
32;9;26;2;39;27;17;1;36;14;0;6;5;9;1;opp4
17;12;15;16;29;18;5;9;75;15;0;12;10;1;11;opp3
23;19;24;31;37;16;23;1;5;8;1;3;7;1;5;tower
16;23;41;24;20;40;29;2;44;11;0;12;7;0;4;tower
21;39;26;16;33;17;29;7;53;12;6;11;2;8;9;tower
9;28;22;33;10;23;8;7;65;15;0;3;9;11;11;mob1
29;9;34;7;14;7;20;5;69;2;5;4;1;4;4;mob1
40;39;19;5;14;3;5;11;49;8;1;9;5;1;11;opp3
19;22;33;29;24;5;39;2;60;15;4;9;5;2;10;opp3
5;28;7;34;12;6;7;6;42;5;0;8;1;11;2;opp4
31;36;11;5;34;7;2;7;57;8;7;3;11;2;4;opp3
20;37;9;38;29;33;14;9;69;0;1;7;0;10;10;mob2
27;5;9;13;26;8;42;7;0;15;5;3;9;10;4;opp1
17;38;5;23;34;42;21;2;7;2;6;5;11;12;7;mob2
37;14;33;32;7;31;41;8;72;1;0;3;6;1;1;opp2
13;35;21;35;33;7;42;9;57;7;7;4;4;12;9;mob2
16;40;35;15;19;35;21;8;53;10;3;10;4;0;10;mob1
25;11;39;2;9;7;18;6;13;0;6;9;4;1;2;mob1
16;2;41;6;20;21;30;7;45;1;4;9;8;0;2;mob1
29;33;23;36;38;27;34;6;76;10;4;6;3;8;8;mob2
15;40;7;41;5;11;14;6;69;6;0;7;11;4;7;mob2
3;33;35;3;29;20;25;12;22;12;7;4;2;1;7;tower
12;14;27;30;18;6;35;10;21;1;1;9;4;3;10;tower
27;21;21;7;10;17;34;5;77;4;5;3;4;0;12;opp1
29;9;9;18;22;1;13;3;78;12;2;5;1;2;7;opp3
4;8;6;1;20;38;39;7;50;14;2;10;11;2;2;mob2
29;10;20;25;24;9;13;11;16;11;6;10;5;5;1;opp4
35;28;30;42;32;28;29;1;32;11;0;10;2;9;3;mob1
22;25;1;4;40;18;26;9;80;4;5;8;4;10;2;mob1
19;29;21;17;35;17;10;9;49;3;0;4;2;9;11;tower
19;40;5;2;10;5;15;2;14;13;0;6;1;2;0;opp3
21;33;13;32;15;15;40;6;66;3;0;4;12;8;2;mob1
14;5;32;32;25;27;1;7;24;8;1;5;5;1;3;opp4
19;15;24;31;31;40;20;3;54;8;2;8;6;2;0;mob2
38;15;1;35;14;15;27;4;33;11;2;1;6;7;11;mob2
1;24;25;23;37;25;19;6;2;12;6;10;0;10;2;tower
37;19;29;19;2;33;20;12;29;3;6;5;7;8;0;opp2
5;16;28;42;16;15;30;8;11;0;6;6;5;12;11;tower
23;2;37;42;40;3;15;7;28;11;2;3;7;0;8;mob1
11;10;31;11;20;18;9;10;76;5;7;7;5;3;8;mob1
11;4;16;7;1;39;25;4;66;12;1;2;3;3;7;opp2
28;2;31;26;43;29;30;9;23;6;7;7;11;9;1;mob1
9;40;12;13;10;41;29;8;27;2;0;5;3;3;6;tower
26;37;23;14;23;17;6;4;56;0;7;9;6;5;2;opp4
26;14;35;13;11;4;38;8;49;3;6;1;11;0;9;mob1
5;42;19;22;36;16;37;9;46;9;7;2;11;4;10;tower
20;24;34;29;24;16;2;3;23;0;1;2;10;2;12;tower
32;40;7;41;38;43;25;8;5;0;0;4;6;10;12;mob2
28;15;25;14;13;7;30;7;37;11;0;6;10;11;1;mob1
40;24;28;10;35;38;23;1;40;11;7;0;11;3;12;mob1
10;6;5;6;20;20;37;12;13;9;0;6;1;10;7;mob1
36;15;39;28;28;17;14;7;37;6;5;12;12;8;11;mob1
12;12;30;43;36;42;35;5;41;12;6;0;3;0;2;tower
37;21;17;8;18;13;33;11;59;4;2;0;0;0;9;mob2
43;6;20;21;17;29;30;1;55;2;7;5;10;6;4;mob1
28;27;28;40;12;39;20;9;71;13;5;12;6;7;10;opp2
3;17;24;31;12;34;43;6;16;11;5;10;1;6;12;tower
17;35;37;15;16;15;29;5;69;3;2;3;4;7;10;opp1
30;19;24;1;12;21;32;6;57;12;2;5;7;0;10;mob1
35;38;20;7;21;38;41;12;66;1;3;4;2;7;8;opp1
25;13;7;39;18;17;7;12;46;0;1;9;2;10;11;mob2
35;19;33;11;13;32;15;1;48;3;3;4;4;5;10;opp1
24;37;36;7;30;32;10;4;5;8;0;7;0;12;7;tower
18;10;11;35;34;9;39;12;44;6;5;1;0;11;6;mob1
1;12;33;5;27;3;18;5;75;8;5;10;11;1;10;opp3
17;34;39;25;35;31;9;5;75;12;5;11;6;6;3;opp4
35;22;3;24;12;18;32;11;76;5;7;5;10;10;8;mob2
27;14;42;4;22;29;20;12;50;1;1;9;8;3;8;mob1
31;30;34;19;35;36;13;6;26;7;5;1;9;11;12;opp1
29;9;3;27;12;11;25;7;68;13;1;10;11;1;2;opp3
40;14;35;23;2;26;29;7;69;8;6;0;3;1;10;opp2
3;33;40;24;34;39;41;3;11;5;1;4;5;0;7;tower
4;14;35;5;5;1;17;3;37;8;0;5;2;8;0;opp2
28;35;25;18;21;12;3;4;20;4;4;6;12;7;1;opp4
42;23;4;26;37;34;35;3;2;15;2;8;12;5;12;mob2
28;43;9;27;23;5;30;2;48;7;5;5;7;12;6;mob2
1;42;1;39;12;8;12;3;6;11;4;4;0;11;0;tower
17;20;15;2;26;11;25;4;62;1;2;1;6;7;5;opp1
23;5;23;22;11;31;23;11;64;4;7;10;1;11;10;opp2
18;41;29;22;12;14;29;1;17;3;0;12;9;8;9;tower
32;11;22;27;27;22;21;6;27;10;4;10;11;11;9;tower
37;10;39;34;7;4;1;4;72;8;7;7;10;5;5;opp4
29;6;26;21;37;34;18;3;65;8;4;0;9;12;9;mob1
9;25;36;39;37;9;20;3;80;11;5;3;11;8;11;tower
34;23;40;25;23;22;40;6;13;14;0;4;9;12;0;tower
5;1;40;21;11;42;30;4;56;0;2;6;10;2;0;mob1
13;20;17;5;35;17;11;5;20;8;0;0;11;2;6;mob1
35;41;7;14;37;33;25;4;15;1;3;6;1;12;12;mob2
19;35;37;29;11;20;26;12;38;3;2;11;8;10;9;tower
32;8;39;14;5;3;9;5;23;12;4;5;1;12;7;opp2
7;20;1;31;35;15;5;3;72;4;4;12;1;7;1;opp4
7;41;39;30;1;32;22;4;36;13;6;3;0;9;9;tower
17;3;40;22;38;40;23;8;43;13;2;5;3;2;4;mob1
35;34;34;42;35;34;33;8;12;11;7;12;10;11;2;tower
42;29;10;22;30;36;27;8;25;3;7;0;2;1;9;mob2
12;2;9;38;13;15;1;7;63;9;4;0;10;1;0;mob1
23;23;43;24;15;20;36;3;19;4;0;8;8;9;11;tower
30;18;16;32;20;41;8;10;58;0;0;6;7;3;1;opp4
7;25;2;31;26;34;15;4;6;11;0;2;5;11;2;tower
38;20;32;30;37;15;8;7;5;9;6;12;1;4;2;opp4
34;37;9;11;2;7;32;7;79;13;4;9;9;5;6;opp3
33;5;14;34;40;21;26;5;31;5;0;4;11;12;1;mob2
30;36;41;19;9;10;9;7;41;1;6;2;4;4;6;opp2
6;35;28;8;25;3;21;2;79;11;0;6;10;2;4;opp3
42;11;27;28;34;14;37;1;10;6;0;5;11;6;4;mob1
36;38;23;21;15;32;25;2;50;10;0;10;5;2;2;mob1
4;26;31;19;18;32;40;5;25;12;7;7;2;8;9;tower
18;29;38;42;4;13;36;9;61;12;5;3;4;7;7;opp2
5;37;22;24;27;26;32;5;65;4;2;1;6;8;7;tower
7;32;10;37;23;43;18;12;54;15;1;6;5;4;5;mob2
21;36;30;41;29;31;2;3;58;9;0;9;6;8;12;mob1
14;17;5;19;16;39;20;5;43;13;1;2;4;3;4;mob2
16;28;7;12;28;40;9;8;69;13;1;11;0;1;1;opp4
33;25;5;18;12;24;24;12;29;11;1;12;7;3;10;mob2
16;2;31;43;29;16;14;9;25;5;5;6;10;5;1;opp4
32;18;36;13;29;40;20;12;13;14;2;10;10;11;11;tower
23;22;23;3;27;24;2;8;62;1;1;3;5;5;8;opp1
15;2;20;16;10;41;18;2;29;4;3;2;11;7;6;mob1
19;13;20;8;4;29;15;12;32;10;1;9;11;9;9;mob1
13;32;41;1;33;33;11;1;28;5;1;10;5;9;6;tower
27;18;5;2;34;27;17;8;66;9;5;8;2;2;12;mob2
24;21;17;3;24;4;17;12;52;5;5;6;3;9;0;opp1
3;5;29;23;27;24;38;1;62;4;4;1;3;0;11;tower
35;3;28;33;31;6;36;11;69;1;7;4;5;5;0;mob1
2;15;17;39;6;29;39;3;43;4;2;11;6;1;3;tower
17;35;10;36;18;4;27;11;5;0;3;5;1;4;3;mob2
18;15;11;40;24;31;10;7;58;7;0;3;8;4;1;opp4
11;23;8;20;7;38;6;3;51;12;0;11;10;10;2;opp4
7;16;13;27;41;1;13;10;25;9;4;11;10;11;5;mob1
1;37;22;9;20;24;36;10;53;12;0;3;9;10;2;tower
10;27;42;42;19;26;39;7;35;0;5;9;2;2;10;tower
10;1;28;12;9;10;7;9;5;2;4;6;0;9;7;mob1
28;19;27;8;3;37;34;11;25;7;1;11;0;1;3;mob1
39;15;23;9;7;32;1;3;52;8;1;6;7;0;2;opp4
11;9;5;16;17;8;29;4;45;3;6;2;12;6;1;mob2
42;40;37;31;37;37;30;4;6;11;3;9;6;2;4;mob1
39;6;12;16;32;13;20;7;52;4;5;0;4;9;3;mob1
18;8;42;26;27;15;13;6;41;11;1;2;4;7;12;mob1
25;32;15;24;31;18;7;12;24;0;4;12;9;3;2;opp4
38;34;32;6;18;27;30;6;8;12;7;12;11;10;9;tower
39;29;10;29;12;42;10;7;15;6;2;3;8;10;5;mob2
26;9;18;24;1;23;27;2;78;8;2;3;6;0;2;opp2
16;30;13;4;10;29;8;4;78;4;1;7;3;5;10;opp2
2;36;22;20;42;1;15;10;30;11;6;2;4;12;11;tower
21;24;25;17;32;4;10;9;31;14;3;11;7;0;5;mob1
37;10;14;10;2;38;23;1;39;10;5;2;10;12;1;opp1
11;34;26;20;26;30;6;4;50;3;4;4;3;1;12;tower
14;8;30;29;17;41;3;4;77;8;6;8;4;3;9;mob1
16;25;10;14;23;15;41;11;24;1;7;8;9;11;8;mob2
36;16;16;24;25;34;17;1;51;13;5;9;11;0;5;mob2
35;17;2;18;29;38;39;12;31;5;5;3;0;2;11;mob2
11;39;41;5;5;27;17;11;30;6;0;0;8;11;11;tower
14;21;13;17;7;21;16;5;48;8;6;10;11;10;0;mob2
9;23;19;33;12;15;34;11;36;10;1;12;11;7;0;tower
32;2;43;38;28;3;27;9;67;9;3;7;8;8;7;opp3
32;2;32;21;13;6;16;10;37;3;7;9;5;12;2;opp4
5;6;43;9;31;15;15;2;75;11;7;4;12;12;11;mob1
26;20;27;28;40;32;17;2;56;6;2;8;7;3;10;mob1
24;10;25;25;25;38;35;5;47;14;0;6;0;2;11;mob1
26;39;26;33;14;39;14;2;24;12;7;3;2;7;12;opp2
3;32;20;38;40;39;25;2;66;8;3;11;10;3;2;tower
40;6;41;21;1;4;25;3;79;10;2;12;8;5;9;mob1
8;39;19;4;14;15;5;10;52;9;0;3;7;12;4;opp1
18;12;29;42;33;43;23;9;69;12;1;5;1;11;2;mob1
4;26;28;23;20;34;14;8;7;0;0;10;1;12;12;tower
25;24;29;40;25;37;33;1;64;8;0;3;0;6;5;mob1
29;12;41;37;3;42;16;11;43;7;3;10;1;0;0;opp2
19;4;8;34;34;1;7;10;62;5;4;10;1;3;1;opp4
11;24;27;43;10;9;32;12;43;10;2;1;0;11;2;tower
30;42;34;12;41;6;6;8;57;6;5;6;8;11;9;opp1
21;25;26;10;18;19;15;8;13;14;4;8;11;0;8;tower
36;24;25;6;10;30;13;1;64;9;3;5;9;4;6;opp1
18;29;20;19;30;21;3;11;36;1;7;4;12;8;0;tower
32;23;3;40;14;8;19;8;77;13;5;10;5;11;5;mob1
30;31;27;13;8;35;35;8;75;0;7;4;1;1;4;opp2
30;43;1;5;3;2;20;2;33;1;2;6;0;10;1;mob2
33;40;5;36;7;25;40;9;72;5;0;6;6;5;6;mob1
42;32;16;30;7;6;14;2;64;1;5;8;0;6;8;mob2
13;25;6;38;26;23;30;2;5;2;7;9;0;10;8;tower
5;24;10;7;15;1;37;6;69;10;6;0;7;2;11;opp3
13;38;12;18;42;23;16;8;21;12;0;6;12;1;10;tower
15;6;32;40;12;26;11;1;1;3;7;7;4;0;8;mob1
9;38;29;26;19;22;28;6;52;8;5;11;2;5;3;tower
18;19;23;43;21;28;19;8;42;14;4;11;0;5;6;tower
6;37;4;35;10;4;26;11;44;6;1;2;5;4;12;mob2
4;26;36;9;34;11;38;10;18;4;7;6;9;12;5;tower
10;36;8;16;8;42;9;11;67;6;4;1;10;9;3;opp1
15;7;22;13;19;16;28;2;20;7;5;0;3;7;8;mob1
16;22;8;35;10;12;32;5;33;0;3;6;10;4;5;mob2
27;4;3;9;29;26;22;1;1;9;1;3;0;8;6;mob2
31;5;29;5;41;17;5;4;12;12;7;8;0;12;4;opp4
29;42;10;39;5;40;43;12;3;15;4;11;2;12;9;opp2
19;22;17;14;36;11;2;9;69;8;0;12;8;8;12;mob1
11;5;3;34;37;37;20;7;37;15;7;4;4;9;12;mob1
5;12;10;4;34;26;30;3;5;3;5;0;8;11;9;tower
31;9;42;22;10;8;32;9;16;6;7;10;5;1;0;opp3
22;27;31;10;21;18;41;3;39;4;6;5;1;12;11;opp2
5;19;26;28;37;26;22;1;31;4;6;10;7;5;11;tower
3;7;2;8;3;26;24;9;12;10;4;7;6;4;7;tower
41;30;13;25;36;41;7;12;11;2;3;7;12;8;3;opp4
23;26;24;13;17;21;24;9;29;15;5;8;0;4;11;tower
36;6;7;18;6;1;15;1;12;14;6;4;1;11;9;opp2
5;23;43;2;5;6;11;10;75;15;2;0;12;11;4;opp4
17;39;8;7;41;14;16;7;45;8;1;2;2;2;8;opp1
37;26;34;5;9;20;18;12;41;13;6;0;0;6;6;tower
40;35;12;6;10;10;18;10;29;14;1;2;11;0;11;opp1
2;35;18;2;9;34;10;4;42;0;0;2;3;10;6;opp1
1;14;1;3;17;8;39;8;56;3;4;2;1;5;4;mob2
40;28;8;20;37;2;42;10;19;8;1;3;7;8;0;mob2
31;28;14;3;6;17;1;7;45;2;3;2;9;3;0;opp1
24;13;15;11;38;28;13;12;51;3;4;6;4;2;12;mob2
30;38;6;26;11;11;30;4;40;15;2;6;4;1;8;opp3
42;37;32;2;5;19;35;2;64;9;5;12;3;8;3;opp2
23;24;32;40;4;24;1;3;78;14;4;5;9;10;2;opp4
5;22;19;22;41;3;34;11;50;5;2;6;10;1;3;opp3
3;38;20;2;25;6;25;6;59;15;3;3;0;10;8;opp1
33;41;39;42;38;29;27;5;33;14;5;5;2;1;12;opp3
20;10;27;16;14;7;35;1;24;13;6;7;11;4;4;opp3
6;8;4;35;12;40;15;10;38;12;7;0;10;6;5;mob2
18;41;35;8;13;14;4;1;70;6;1;0;7;11;6;opp4
39;42;12;28;11;40;7;3;71;3;7;5;2;1;10;opp2
32;32;24;19;13;14;40;12;18;6;1;1;8;11;10;opp1
31;14;16;12;33;25;5;5;8;8;6;8;6;5;2;opp4
38;31;34;27;5;26;27;8;75;3;6;6;10;1;5;mob1
2;7;23;8;24;28;20;2;31;5;7;9;0;11;11;tower
39;43;17;21;31;13;41;8;43;10;5;4;10;6;8;mob1
3;6;17;7;22;23;22;6;40;8;6;7;1;7;11;tower
3;42;13;24;32;1;33;5;68;7;0;4;6;1;10;opp3
12;26;4;18;2;42;29;10;41;11;3;10;10;10;9;mob2
21;26;7;24;31;10;33;4;51;1;2;8;2;8;3;mob2
39;22;7;20;5;29;38;10;8;4;1;9;12;11;0;mob2
20;19;1;22;36;13;5;7;4;3;7;3;9;1;2;mob2
4;7;42;17;6;14;26;11;45;9;4;10;6;11;2;tower
23;27;11;25;38;26;34;10;77;13;7;4;3;5;9;mob1
40;10;29;8;7;32;32;12;32;9;2;10;11;2;4;mob2
37;22;34;17;17;25;40;5;74;9;3;3;8;2;9;opp1
23;10;36;43;31;26;32;5;59;1;1;2;3;8;3;mob1
14;32;8;4;17;33;8;9;74;5;1;7;12;7;3;mob2
8;14;21;26;16;43;10;5;26;1;1;5;0;1;5;tower
7;3;19;7;39;28;12;11;32;9;0;7;12;11;10;tower
11;21;13;31;30;15;43;10;73;6;1;3;11;9;12;mob2
28;10;32;28;26;36;38;4;15;11;0;12;11;12;7;mob1
39;2;25;11;11;25;35;8;36;14;0;9;10;1;7;mob1
43;41;39;38;16;5;35;12;48;14;4;7;3;11;6;opp2
36;31;28;41;40;23;23;11;27;7;2;11;0;6;11;mob1
28;8;38;39;31;3;7;7;47;0;6;8;0;2;6;opp3
5;8;19;26;26;9;1;8;66;15;3;8;11;7;7;opp4
36;28;27;7;25;1;21;10;63;0;6;4;2;10;4;opp1
19;3;6;35;5;29;3;9;63;2;7;3;12;1;3;opp4
27;5;36;31;6;10;27;12;9;8;6;10;9;6;11;mob1
21;21;27;18;26;9;39;1;43;6;3;5;10;0;7;mob1
12;39;15;31;32;9;39;7;26;4;0;12;5;0;12;tower
41;18;22;33;25;6;37;1;77;14;7;12;7;4;8;opp3
8;33;19;22;5;36;28;3;69;15;5;5;0;7;3;mob1
24;8;15;16;21;18;15;9;78;4;0;4;9;5;4;mob2
38;24;26;28;41;21;43;2;65;15;3;1;10;5;4;mob1
33;17;6;4;34;36;25;6;35;4;4;10;9;0;3;mob2
29;25;30;19;35;38;33;6;68;5;1;0;5;11;6;mob1
23;43;41;25;27;26;19;7;12;8;3;4;10;11;9;tower
7;9;18;31;36;21;16;4;23;8;4;9;8;11;5;tower
35;21;39;36;36;37;33;10;41;9;4;1;0;7;0;mob1
1 tower_dist mob1_dist mob2_dist opp1_dist opp2_dist opp3_dist opp4_dist agent_hp tower_hp mob1_hp mob2_hp opp1_hp opp2_hp opp3_hp opp4_hp goal
2 24 37 41 19 37 29 20 3 38 13 3 12 9 0 10 tower
3 1 35 11 38 37 10 34 4 11 15 7 5 0 6 4 tower
4 7 10 5 41 17 27 19 8 31 14 2 2 7 4 0 mob2
5 15 3 12 18 9 25 40 8 44 7 5 10 0 5 9 mob1
6 18 19 21 12 8 13 10 2 44 5 2 9 7 1 10 opp3
7 19 30 11 34 17 26 13 3 35 4 2 0 12 2 12 mob2
8 13 17 10 7 9 30 9 2 40 1 5 10 9 12 3 opp4
9 14 30 21 11 18 21 7 12 28 5 3 4 0 11 0 tower
10 7 38 7 21 5 25 15 6 14 1 4 12 10 12 8 tower
11 40 24 41 39 1 9 38 2 12 6 1 1 1 9 11 opp2
12 41 2 24 15 17 19 3 10 54 6 6 11 1 2 0 mob1
13 25 42 32 25 6 19 11 12 25 10 3 8 11 4 6 tower
14 6 19 38 10 32 17 24 5 67 12 3 8 4 10 2 tower
15 24 35 32 37 10 7 9 4 75 10 7 11 3 12 10 opp2
16 16 25 11 23 6 35 30 11 71 9 4 8 9 12 0 mob2
17 37 38 5 22 23 13 25 7 6 3 0 8 12 10 1 mob2
18 40 42 34 28 34 8 15 1 54 4 5 10 6 9 1 opp4
19 6 16 2 4 18 27 5 12 73 8 7 10 12 5 11 mob2
20 9 1 1 18 40 34 20 6 69 12 5 10 6 1 9 mob1
21 13 22 4 20 25 29 7 7 27 2 1 9 7 1 3 mob2
22 34 15 39 5 37 23 1 3 15 2 1 1 9 10 5 opp1
23 38 20 4 22 43 23 22 6 60 6 3 4 4 8 0 mob1
24 12 31 5 14 23 15 27 1 50 7 2 6 8 6 3 mob2
25 14 37 2 25 23 26 8 4 53 10 0 12 9 9 11 mob2
26 33 8 22 35 42 21 21 8 68 6 6 6 6 7 6 mob1
27 17 11 7 25 6 16 8 5 52 7 7 0 11 2 2 mob2
28 28 12 20 3 7 32 28 12 74 0 6 0 5 12 9 opp2
29 21 9 10 38 1 40 41 1 61 3 5 9 7 9 2 opp2
30 16 1 39 36 7 36 17 1 37 2 6 10 2 7 4 opp2
31 22 15 31 27 3 40 26 9 71 1 0 10 9 5 9 mob1
32 27 26 25 9 13 7 27 2 2 9 4 1 1 3 10 opp1
33 28 43 18 15 21 16 18 3 51 3 4 10 0 5 0 mob2
34 41 8 4 4 6 11 23 12 54 14 5 6 9 8 0 mob2
35 15 34 12 17 18 15 19 1 75 5 4 5 1 1 7 opp3
36 42 36 1 3 28 24 28 2 54 13 3 6 7 11 7 mob2
37 25 22 23 34 8 42 14 9 40 14 5 2 1 7 12 opp2
38 41 14 7 43 15 26 19 4 16 3 0 9 12 1 7 mob1
39 18 40 1 40 38 10 5 2 54 14 4 11 2 11 9 mob2
40 14 35 5 3 5 43 37 3 23 2 1 10 9 11 8 mob2
41 40 10 23 25 33 37 26 1 42 14 6 2 11 5 6 mob1
42 32 9 26 2 39 27 17 1 36 14 0 6 5 9 1 opp4
43 17 12 15 16 29 18 5 9 75 15 0 12 10 1 11 opp3
44 23 19 24 31 37 16 23 1 5 8 1 3 7 1 5 tower
45 16 23 41 24 20 40 29 2 44 11 0 12 7 0 4 tower
46 21 39 26 16 33 17 29 7 53 12 6 11 2 8 9 tower
47 9 28 22 33 10 23 8 7 65 15 0 3 9 11 11 mob1
48 29 9 34 7 14 7 20 5 69 2 5 4 1 4 4 mob1
49 40 39 19 5 14 3 5 11 49 8 1 9 5 1 11 opp3
50 19 22 33 29 24 5 39 2 60 15 4 9 5 2 10 opp3
51 5 28 7 34 12 6 7 6 42 5 0 8 1 11 2 opp4
52 31 36 11 5 34 7 2 7 57 8 7 3 11 2 4 opp3
53 20 37 9 38 29 33 14 9 69 0 1 7 0 10 10 mob2
54 27 5 9 13 26 8 42 7 0 15 5 3 9 10 4 opp1
55 17 38 5 23 34 42 21 2 7 2 6 5 11 12 7 mob2
56 37 14 33 32 7 31 41 8 72 1 0 3 6 1 1 opp2
57 13 35 21 35 33 7 42 9 57 7 7 4 4 12 9 mob2
58 16 40 35 15 19 35 21 8 53 10 3 10 4 0 10 mob1
59 25 11 39 2 9 7 18 6 13 0 6 9 4 1 2 mob1
60 16 2 41 6 20 21 30 7 45 1 4 9 8 0 2 mob1
61 29 33 23 36 38 27 34 6 76 10 4 6 3 8 8 mob2
62 15 40 7 41 5 11 14 6 69 6 0 7 11 4 7 mob2
63 3 33 35 3 29 20 25 12 22 12 7 4 2 1 7 tower
64 12 14 27 30 18 6 35 10 21 1 1 9 4 3 10 tower
65 27 21 21 7 10 17 34 5 77 4 5 3 4 0 12 opp1
66 29 9 9 18 22 1 13 3 78 12 2 5 1 2 7 opp3
67 4 8 6 1 20 38 39 7 50 14 2 10 11 2 2 mob2
68 29 10 20 25 24 9 13 11 16 11 6 10 5 5 1 opp4
69 35 28 30 42 32 28 29 1 32 11 0 10 2 9 3 mob1
70 22 25 1 4 40 18 26 9 80 4 5 8 4 10 2 mob1
71 19 29 21 17 35 17 10 9 49 3 0 4 2 9 11 tower
72 19 40 5 2 10 5 15 2 14 13 0 6 1 2 0 opp3
73 21 33 13 32 15 15 40 6 66 3 0 4 12 8 2 mob1
74 14 5 32 32 25 27 1 7 24 8 1 5 5 1 3 opp4
75 19 15 24 31 31 40 20 3 54 8 2 8 6 2 0 mob2
76 38 15 1 35 14 15 27 4 33 11 2 1 6 7 11 mob2
77 1 24 25 23 37 25 19 6 2 12 6 10 0 10 2 tower
78 37 19 29 19 2 33 20 12 29 3 6 5 7 8 0 opp2
79 5 16 28 42 16 15 30 8 11 0 6 6 5 12 11 tower
80 23 2 37 42 40 3 15 7 28 11 2 3 7 0 8 mob1
81 11 10 31 11 20 18 9 10 76 5 7 7 5 3 8 mob1
82 11 4 16 7 1 39 25 4 66 12 1 2 3 3 7 opp2
83 28 2 31 26 43 29 30 9 23 6 7 7 11 9 1 mob1
84 9 40 12 13 10 41 29 8 27 2 0 5 3 3 6 tower
85 26 37 23 14 23 17 6 4 56 0 7 9 6 5 2 opp4
86 26 14 35 13 11 4 38 8 49 3 6 1 11 0 9 mob1
87 5 42 19 22 36 16 37 9 46 9 7 2 11 4 10 tower
88 20 24 34 29 24 16 2 3 23 0 1 2 10 2 12 tower
89 32 40 7 41 38 43 25 8 5 0 0 4 6 10 12 mob2
90 28 15 25 14 13 7 30 7 37 11 0 6 10 11 1 mob1
91 40 24 28 10 35 38 23 1 40 11 7 0 11 3 12 mob1
92 10 6 5 6 20 20 37 12 13 9 0 6 1 10 7 mob1
93 36 15 39 28 28 17 14 7 37 6 5 12 12 8 11 mob1
94 12 12 30 43 36 42 35 5 41 12 6 0 3 0 2 tower
95 37 21 17 8 18 13 33 11 59 4 2 0 0 0 9 mob2
96 43 6 20 21 17 29 30 1 55 2 7 5 10 6 4 mob1
97 28 27 28 40 12 39 20 9 71 13 5 12 6 7 10 opp2
98 3 17 24 31 12 34 43 6 16 11 5 10 1 6 12 tower
99 17 35 37 15 16 15 29 5 69 3 2 3 4 7 10 opp1
100 30 19 24 1 12 21 32 6 57 12 2 5 7 0 10 mob1
101 35 38 20 7 21 38 41 12 66 1 3 4 2 7 8 opp1
102 25 13 7 39 18 17 7 12 46 0 1 9 2 10 11 mob2
103 35 19 33 11 13 32 15 1 48 3 3 4 4 5 10 opp1
104 24 37 36 7 30 32 10 4 5 8 0 7 0 12 7 tower
105 18 10 11 35 34 9 39 12 44 6 5 1 0 11 6 mob1
106 1 12 33 5 27 3 18 5 75 8 5 10 11 1 10 opp3
107 17 34 39 25 35 31 9 5 75 12 5 11 6 6 3 opp4
108 35 22 3 24 12 18 32 11 76 5 7 5 10 10 8 mob2
109 27 14 42 4 22 29 20 12 50 1 1 9 8 3 8 mob1
110 31 30 34 19 35 36 13 6 26 7 5 1 9 11 12 opp1
111 29 9 3 27 12 11 25 7 68 13 1 10 11 1 2 opp3
112 40 14 35 23 2 26 29 7 69 8 6 0 3 1 10 opp2
113 3 33 40 24 34 39 41 3 11 5 1 4 5 0 7 tower
114 4 14 35 5 5 1 17 3 37 8 0 5 2 8 0 opp2
115 28 35 25 18 21 12 3 4 20 4 4 6 12 7 1 opp4
116 42 23 4 26 37 34 35 3 2 15 2 8 12 5 12 mob2
117 28 43 9 27 23 5 30 2 48 7 5 5 7 12 6 mob2
118 1 42 1 39 12 8 12 3 6 11 4 4 0 11 0 tower
119 17 20 15 2 26 11 25 4 62 1 2 1 6 7 5 opp1
120 23 5 23 22 11 31 23 11 64 4 7 10 1 11 10 opp2
121 18 41 29 22 12 14 29 1 17 3 0 12 9 8 9 tower
122 32 11 22 27 27 22 21 6 27 10 4 10 11 11 9 tower
123 37 10 39 34 7 4 1 4 72 8 7 7 10 5 5 opp4
124 29 6 26 21 37 34 18 3 65 8 4 0 9 12 9 mob1
125 9 25 36 39 37 9 20 3 80 11 5 3 11 8 11 tower
126 34 23 40 25 23 22 40 6 13 14 0 4 9 12 0 tower
127 5 1 40 21 11 42 30 4 56 0 2 6 10 2 0 mob1
128 13 20 17 5 35 17 11 5 20 8 0 0 11 2 6 mob1
129 35 41 7 14 37 33 25 4 15 1 3 6 1 12 12 mob2
130 19 35 37 29 11 20 26 12 38 3 2 11 8 10 9 tower
131 32 8 39 14 5 3 9 5 23 12 4 5 1 12 7 opp2
132 7 20 1 31 35 15 5 3 72 4 4 12 1 7 1 opp4
133 7 41 39 30 1 32 22 4 36 13 6 3 0 9 9 tower
134 17 3 40 22 38 40 23 8 43 13 2 5 3 2 4 mob1
135 35 34 34 42 35 34 33 8 12 11 7 12 10 11 2 tower
136 42 29 10 22 30 36 27 8 25 3 7 0 2 1 9 mob2
137 12 2 9 38 13 15 1 7 63 9 4 0 10 1 0 mob1
138 23 23 43 24 15 20 36 3 19 4 0 8 8 9 11 tower
139 30 18 16 32 20 41 8 10 58 0 0 6 7 3 1 opp4
140 7 25 2 31 26 34 15 4 6 11 0 2 5 11 2 tower
141 38 20 32 30 37 15 8 7 5 9 6 12 1 4 2 opp4
142 34 37 9 11 2 7 32 7 79 13 4 9 9 5 6 opp3
143 33 5 14 34 40 21 26 5 31 5 0 4 11 12 1 mob2
144 30 36 41 19 9 10 9 7 41 1 6 2 4 4 6 opp2
145 6 35 28 8 25 3 21 2 79 11 0 6 10 2 4 opp3
146 42 11 27 28 34 14 37 1 10 6 0 5 11 6 4 mob1
147 36 38 23 21 15 32 25 2 50 10 0 10 5 2 2 mob1
148 4 26 31 19 18 32 40 5 25 12 7 7 2 8 9 tower
149 18 29 38 42 4 13 36 9 61 12 5 3 4 7 7 opp2
150 5 37 22 24 27 26 32 5 65 4 2 1 6 8 7 tower
151 7 32 10 37 23 43 18 12 54 15 1 6 5 4 5 mob2
152 21 36 30 41 29 31 2 3 58 9 0 9 6 8 12 mob1
153 14 17 5 19 16 39 20 5 43 13 1 2 4 3 4 mob2
154 16 28 7 12 28 40 9 8 69 13 1 11 0 1 1 opp4
155 33 25 5 18 12 24 24 12 29 11 1 12 7 3 10 mob2
156 16 2 31 43 29 16 14 9 25 5 5 6 10 5 1 opp4
157 32 18 36 13 29 40 20 12 13 14 2 10 10 11 11 tower
158 23 22 23 3 27 24 2 8 62 1 1 3 5 5 8 opp1
159 15 2 20 16 10 41 18 2 29 4 3 2 11 7 6 mob1
160 19 13 20 8 4 29 15 12 32 10 1 9 11 9 9 mob1
161 13 32 41 1 33 33 11 1 28 5 1 10 5 9 6 tower
162 27 18 5 2 34 27 17 8 66 9 5 8 2 2 12 mob2
163 24 21 17 3 24 4 17 12 52 5 5 6 3 9 0 opp1
164 3 5 29 23 27 24 38 1 62 4 4 1 3 0 11 tower
165 35 3 28 33 31 6 36 11 69 1 7 4 5 5 0 mob1
166 2 15 17 39 6 29 39 3 43 4 2 11 6 1 3 tower
167 17 35 10 36 18 4 27 11 5 0 3 5 1 4 3 mob2
168 18 15 11 40 24 31 10 7 58 7 0 3 8 4 1 opp4
169 11 23 8 20 7 38 6 3 51 12 0 11 10 10 2 opp4
170 7 16 13 27 41 1 13 10 25 9 4 11 10 11 5 mob1
171 1 37 22 9 20 24 36 10 53 12 0 3 9 10 2 tower
172 10 27 42 42 19 26 39 7 35 0 5 9 2 2 10 tower
173 10 1 28 12 9 10 7 9 5 2 4 6 0 9 7 mob1
174 28 19 27 8 3 37 34 11 25 7 1 11 0 1 3 mob1
175 39 15 23 9 7 32 1 3 52 8 1 6 7 0 2 opp4
176 11 9 5 16 17 8 29 4 45 3 6 2 12 6 1 mob2
177 42 40 37 31 37 37 30 4 6 11 3 9 6 2 4 mob1
178 39 6 12 16 32 13 20 7 52 4 5 0 4 9 3 mob1
179 18 8 42 26 27 15 13 6 41 11 1 2 4 7 12 mob1
180 25 32 15 24 31 18 7 12 24 0 4 12 9 3 2 opp4
181 38 34 32 6 18 27 30 6 8 12 7 12 11 10 9 tower
182 39 29 10 29 12 42 10 7 15 6 2 3 8 10 5 mob2
183 26 9 18 24 1 23 27 2 78 8 2 3 6 0 2 opp2
184 16 30 13 4 10 29 8 4 78 4 1 7 3 5 10 opp2
185 2 36 22 20 42 1 15 10 30 11 6 2 4 12 11 tower
186 21 24 25 17 32 4 10 9 31 14 3 11 7 0 5 mob1
187 37 10 14 10 2 38 23 1 39 10 5 2 10 12 1 opp1
188 11 34 26 20 26 30 6 4 50 3 4 4 3 1 12 tower
189 14 8 30 29 17 41 3 4 77 8 6 8 4 3 9 mob1
190 16 25 10 14 23 15 41 11 24 1 7 8 9 11 8 mob2
191 36 16 16 24 25 34 17 1 51 13 5 9 11 0 5 mob2
192 35 17 2 18 29 38 39 12 31 5 5 3 0 2 11 mob2
193 11 39 41 5 5 27 17 11 30 6 0 0 8 11 11 tower
194 14 21 13 17 7 21 16 5 48 8 6 10 11 10 0 mob2
195 9 23 19 33 12 15 34 11 36 10 1 12 11 7 0 tower
196 32 2 43 38 28 3 27 9 67 9 3 7 8 8 7 opp3
197 32 2 32 21 13 6 16 10 37 3 7 9 5 12 2 opp4
198 5 6 43 9 31 15 15 2 75 11 7 4 12 12 11 mob1
199 26 20 27 28 40 32 17 2 56 6 2 8 7 3 10 mob1
200 24 10 25 25 25 38 35 5 47 14 0 6 0 2 11 mob1
201 26 39 26 33 14 39 14 2 24 12 7 3 2 7 12 opp2
202 3 32 20 38 40 39 25 2 66 8 3 11 10 3 2 tower
203 40 6 41 21 1 4 25 3 79 10 2 12 8 5 9 mob1
204 8 39 19 4 14 15 5 10 52 9 0 3 7 12 4 opp1
205 18 12 29 42 33 43 23 9 69 12 1 5 1 11 2 mob1
206 4 26 28 23 20 34 14 8 7 0 0 10 1 12 12 tower
207 25 24 29 40 25 37 33 1 64 8 0 3 0 6 5 mob1
208 29 12 41 37 3 42 16 11 43 7 3 10 1 0 0 opp2
209 19 4 8 34 34 1 7 10 62 5 4 10 1 3 1 opp4
210 11 24 27 43 10 9 32 12 43 10 2 1 0 11 2 tower
211 30 42 34 12 41 6 6 8 57 6 5 6 8 11 9 opp1
212 21 25 26 10 18 19 15 8 13 14 4 8 11 0 8 tower
213 36 24 25 6 10 30 13 1 64 9 3 5 9 4 6 opp1
214 18 29 20 19 30 21 3 11 36 1 7 4 12 8 0 tower
215 32 23 3 40 14 8 19 8 77 13 5 10 5 11 5 mob1
216 30 31 27 13 8 35 35 8 75 0 7 4 1 1 4 opp2
217 30 43 1 5 3 2 20 2 33 1 2 6 0 10 1 mob2
218 33 40 5 36 7 25 40 9 72 5 0 6 6 5 6 mob1
219 42 32 16 30 7 6 14 2 64 1 5 8 0 6 8 mob2
220 13 25 6 38 26 23 30 2 5 2 7 9 0 10 8 tower
221 5 24 10 7 15 1 37 6 69 10 6 0 7 2 11 opp3
222 13 38 12 18 42 23 16 8 21 12 0 6 12 1 10 tower
223 15 6 32 40 12 26 11 1 1 3 7 7 4 0 8 mob1
224 9 38 29 26 19 22 28 6 52 8 5 11 2 5 3 tower
225 18 19 23 43 21 28 19 8 42 14 4 11 0 5 6 tower
226 6 37 4 35 10 4 26 11 44 6 1 2 5 4 12 mob2
227 4 26 36 9 34 11 38 10 18 4 7 6 9 12 5 tower
228 10 36 8 16 8 42 9 11 67 6 4 1 10 9 3 opp1
229 15 7 22 13 19 16 28 2 20 7 5 0 3 7 8 mob1
230 16 22 8 35 10 12 32 5 33 0 3 6 10 4 5 mob2
231 27 4 3 9 29 26 22 1 1 9 1 3 0 8 6 mob2
232 31 5 29 5 41 17 5 4 12 12 7 8 0 12 4 opp4
233 29 42 10 39 5 40 43 12 3 15 4 11 2 12 9 opp2
234 19 22 17 14 36 11 2 9 69 8 0 12 8 8 12 mob1
235 11 5 3 34 37 37 20 7 37 15 7 4 4 9 12 mob1
236 5 12 10 4 34 26 30 3 5 3 5 0 8 11 9 tower
237 31 9 42 22 10 8 32 9 16 6 7 10 5 1 0 opp3
238 22 27 31 10 21 18 41 3 39 4 6 5 1 12 11 opp2
239 5 19 26 28 37 26 22 1 31 4 6 10 7 5 11 tower
240 3 7 2 8 3 26 24 9 12 10 4 7 6 4 7 tower
241 41 30 13 25 36 41 7 12 11 2 3 7 12 8 3 opp4
242 23 26 24 13 17 21 24 9 29 15 5 8 0 4 11 tower
243 36 6 7 18 6 1 15 1 12 14 6 4 1 11 9 opp2
244 5 23 43 2 5 6 11 10 75 15 2 0 12 11 4 opp4
245 17 39 8 7 41 14 16 7 45 8 1 2 2 2 8 opp1
246 37 26 34 5 9 20 18 12 41 13 6 0 0 6 6 tower
247 40 35 12 6 10 10 18 10 29 14 1 2 11 0 11 opp1
248 2 35 18 2 9 34 10 4 42 0 0 2 3 10 6 opp1
249 1 14 1 3 17 8 39 8 56 3 4 2 1 5 4 mob2
250 40 28 8 20 37 2 42 10 19 8 1 3 7 8 0 mob2
251 31 28 14 3 6 17 1 7 45 2 3 2 9 3 0 opp1
252 24 13 15 11 38 28 13 12 51 3 4 6 4 2 12 mob2
253 30 38 6 26 11 11 30 4 40 15 2 6 4 1 8 opp3
254 42 37 32 2 5 19 35 2 64 9 5 12 3 8 3 opp2
255 23 24 32 40 4 24 1 3 78 14 4 5 9 10 2 opp4
256 5 22 19 22 41 3 34 11 50 5 2 6 10 1 3 opp3
257 3 38 20 2 25 6 25 6 59 15 3 3 0 10 8 opp1
258 33 41 39 42 38 29 27 5 33 14 5 5 2 1 12 opp3
259 20 10 27 16 14 7 35 1 24 13 6 7 11 4 4 opp3
260 6 8 4 35 12 40 15 10 38 12 7 0 10 6 5 mob2
261 18 41 35 8 13 14 4 1 70 6 1 0 7 11 6 opp4
262 39 42 12 28 11 40 7 3 71 3 7 5 2 1 10 opp2
263 32 32 24 19 13 14 40 12 18 6 1 1 8 11 10 opp1
264 31 14 16 12 33 25 5 5 8 8 6 8 6 5 2 opp4
265 38 31 34 27 5 26 27 8 75 3 6 6 10 1 5 mob1
266 2 7 23 8 24 28 20 2 31 5 7 9 0 11 11 tower
267 39 43 17 21 31 13 41 8 43 10 5 4 10 6 8 mob1
268 3 6 17 7 22 23 22 6 40 8 6 7 1 7 11 tower
269 3 42 13 24 32 1 33 5 68 7 0 4 6 1 10 opp3
270 12 26 4 18 2 42 29 10 41 11 3 10 10 10 9 mob2
271 21 26 7 24 31 10 33 4 51 1 2 8 2 8 3 mob2
272 39 22 7 20 5 29 38 10 8 4 1 9 12 11 0 mob2
273 20 19 1 22 36 13 5 7 4 3 7 3 9 1 2 mob2
274 4 7 42 17 6 14 26 11 45 9 4 10 6 11 2 tower
275 23 27 11 25 38 26 34 10 77 13 7 4 3 5 9 mob1
276 40 10 29 8 7 32 32 12 32 9 2 10 11 2 4 mob2
277 37 22 34 17 17 25 40 5 74 9 3 3 8 2 9 opp1
278 23 10 36 43 31 26 32 5 59 1 1 2 3 8 3 mob1
279 14 32 8 4 17 33 8 9 74 5 1 7 12 7 3 mob2
280 8 14 21 26 16 43 10 5 26 1 1 5 0 1 5 tower
281 7 3 19 7 39 28 12 11 32 9 0 7 12 11 10 tower
282 11 21 13 31 30 15 43 10 73 6 1 3 11 9 12 mob2
283 28 10 32 28 26 36 38 4 15 11 0 12 11 12 7 mob1
284 39 2 25 11 11 25 35 8 36 14 0 9 10 1 7 mob1
285 43 41 39 38 16 5 35 12 48 14 4 7 3 11 6 opp2
286 36 31 28 41 40 23 23 11 27 7 2 11 0 6 11 mob1
287 28 8 38 39 31 3 7 7 47 0 6 8 0 2 6 opp3
288 5 8 19 26 26 9 1 8 66 15 3 8 11 7 7 opp4
289 36 28 27 7 25 1 21 10 63 0 6 4 2 10 4 opp1
290 19 3 6 35 5 29 3 9 63 2 7 3 12 1 3 opp4
291 27 5 36 31 6 10 27 12 9 8 6 10 9 6 11 mob1
292 21 21 27 18 26 9 39 1 43 6 3 5 10 0 7 mob1
293 12 39 15 31 32 9 39 7 26 4 0 12 5 0 12 tower
294 41 18 22 33 25 6 37 1 77 14 7 12 7 4 8 opp3
295 8 33 19 22 5 36 28 3 69 15 5 5 0 7 3 mob1
296 24 8 15 16 21 18 15 9 78 4 0 4 9 5 4 mob2
297 38 24 26 28 41 21 43 2 65 15 3 1 10 5 4 mob1
298 33 17 6 4 34 36 25 6 35 4 4 10 9 0 3 mob2
299 29 25 30 19 35 38 33 6 68 5 1 0 5 11 6 mob1
300 23 43 41 25 27 26 19 7 12 8 3 4 10 11 9 tower
301 7 9 18 31 36 21 16 4 23 8 4 9 8 11 5 tower
302 35 21 39 36 36 37 33 10 41 9 4 1 0 7 0 mob1

77
learning/decision_tree.py Normal file
View File

@ -0,0 +1,77 @@
from typing import List, Tuple
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from common.helpers import castle_neighbors, find_neighbours
from models.castle import Castle
from models.knight import Knight
from models.monster import Monster
def manhattan_distance(p1: Tuple[int, int], p2: Tuple[int, int]) -> int:
x1, y1 = p1
x2, y2 = p2
return abs(x1 - x2) + abs(y1 - y2)
def parse_hp(hp: int) -> int:
return max(0, hp)
def parse_idx_of_opp_or_monster(s: str) -> int:
return int(s[-1]) - 1
class DecisionTree:
def __init__(self) -> None:
data_frame = pd.read_csv('learning/dataset_tree.csv', delimiter=';')
unlabeled_goals = data_frame['goal']
self.goals_label_encoder = LabelEncoder()
self.goals = self.goals_label_encoder.fit_transform(unlabeled_goals)
self.train_set = data_frame.drop('goal', axis='columns')
self.model = DecisionTreeClassifier(criterion='entropy')
self.model.fit(self.train_set.values, self.goals)
def predict_move(self, grid: List[List[str]], current_knight: Knight, castle: Castle, monsters: List[Monster],
opponents: List[Knight]) -> \
List[Tuple[int, int]]:
distance_to_castle = manhattan_distance(current_knight.position, castle.position)
monsters_parsed = []
for monster in monsters:
monsters_parsed.append((manhattan_distance(current_knight.position, monster.position), parse_hp(
monster.current_hp)))
opponents_parsed = []
for opponent in opponents:
opponents_parsed.append(
(manhattan_distance(current_knight.position, opponent.position), parse_hp(opponent.current_hp)))
prediction = self.get_prediction(tower_dist=distance_to_castle, tower_hp=castle.current_hp,
mob1_dist=monsters_parsed[0][0], mob1_hp=monsters_parsed[0][1],
mob2_dist=monsters_parsed[1][0], mob2_hp=monsters_parsed[1][1],
opp1_dist=opponents_parsed[0][0], opp1_hp=opponents_parsed[0][1],
opp2_dist=opponents_parsed[1][0], opp2_hp=opponents_parsed[1][1],
opp3_dist=opponents_parsed[2][0], opp3_hp=opponents_parsed[2][1],
opp4_dist=opponents_parsed[3][0], opp4_hp=opponents_parsed[3][1],
agent_hp=current_knight.current_hp)
print(prediction)
if prediction == 'tower': # castle...
return castle_neighbors(grid, castle_bottom_right_row=castle.position[0],
castle_bottom_right_col=castle.position[1])
elif prediction.startswith('opp'):
idx = parse_idx_of_opp_or_monster(prediction)
return find_neighbours(grid, opponents[idx].position[1], opponents[idx].position[0])
else:
idx = parse_idx_of_opp_or_monster(prediction)
return find_neighbours(grid, monsters[idx].position[1], monsters[idx].position[0])
def get_prediction(self, tower_dist: int, mob1_dist: int, mob2_dist: int, opp1_dist: int, opp2_dist: int,
opp3_dist: int, opp4_dist: int, agent_hp: int, tower_hp: int, mob1_hp: int, mob2_hp: int,
opp1_hp: int, opp2_hp: int, opp3_hp: int, opp4_hp) -> str:
prediction = self.model.predict(
[[tower_dist, mob1_dist, mob2_dist, opp1_dist, opp2_dist, opp3_dist, opp4_dist, agent_hp,
tower_hp, mob1_hp, mob2_hp, opp1_hp, opp2_hp, opp3_hp, opp4_hp]])
return self.goals_label_encoder.inverse_transform(prediction)[0]

View File

@ -2,9 +2,9 @@ import random
import pygame import pygame
from algorithms.a_star import a_star, State, TURN_RIGHT, TURN_LEFT, FORWARD, UP, DOWN, LEFT, RIGHT from algorithms.a_star import a_star, State, TURN_RIGHT, TURN_LEFT, FORWARD
from common.constants import * from common.constants import *
from common.helpers import castle_neighbors from learning.decision_tree import DecisionTree
from logic.knights_queue import KnightsQueue from logic.knights_queue import KnightsQueue
from logic.spawner import Spawner from logic.spawner import Spawner
from models.castle import Castle from models.castle import Castle
@ -17,6 +17,7 @@ class Level:
def __init__(self, screen, logs): def __init__(self, screen, logs):
self.screen = screen self.screen = screen
self.logs = logs self.logs = logs
self.decision_tree = DecisionTree()
# sprite group setup # sprite group setup
self.sprites = pygame.sprite.LayeredUpdates() self.sprites = pygame.sprite.LayeredUpdates()
@ -112,12 +113,19 @@ class Level:
knight_pos_x = current_knight.position[0] knight_pos_x = current_knight.position[0]
knight_pos_y = current_knight.position[1] knight_pos_y = current_knight.position[1]
castle_cords = (self.list_castles[0].position[0], self.list_castles[0].position[1]) goal_list = self.decision_tree.predict_move(grid=self.map, current_knight=current_knight,
goal_list = castle_neighbors(self.map, castle_cords[0], castle_cords[1]) # list of castle neighbors monsters=self.list_monsters,
opponents=self.list_knights_red
if current_knight.team_alias == 'k_r' else self.list_knights_blue,
castle=self.list_castles[0])
if len(goal_list) == 0:
return
state = State((knight_pos_y, knight_pos_x), current_knight.direction.name) state = State((knight_pos_y, knight_pos_x), current_knight.direction.name)
action_list = a_star(state, self.map, goal_list) action_list = a_star(state, self.map, goal_list)
print(action_list) print(action_list)
print(goal_list)
if len(action_list) == 0: if len(action_list) == 0:
return return

View File

@ -1,6 +1,7 @@
import pygame.image
import random import random
import pygame.image
from common.helpers import parse_cord from common.helpers import parse_cord
from logic.health_bar import HealthBar from logic.health_bar import HealthBar
@ -20,10 +21,11 @@ class Monster(pygame.sprite.Sprite):
self.image = pygame.transform.scale(self.image, (40, 40)) self.image = pygame.transform.scale(self.image, (40, 40))
position_in_px = (parse_cord(position[0]), parse_cord(position[1])) position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
self.rect = self.image.get_rect(topleft=position_in_px) self.rect = self.image.get_rect(topleft=position_in_px)
self.position = position
self.max_hp = random.randrange(15, 25) self.max_hp = random.randrange(15, 25)
self.current_hp = random.randint(1, self.max_hp) self.current_hp = random.randint(1, self.max_hp)
self.health_bar = HealthBar(screen, self.rect, current_hp=self.current_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True) self.health_bar = HealthBar(screen, self.rect, current_hp=self.current_hp, max_hp=self.max_hp,
calculate_xy=True, calculate_size=True)
self.attack = random.randrange(2, 10) self.attack = random.randrange(2, 10)
if self.image == monster_images[0]: if self.image == monster_images[0]:
self.max_hp = 20 self.max_hp = 20

Binary file not shown.