Compare commits

..

41 Commits

Author SHA1 Message Date
f4aa9741e3 Merge pull request 'added points in stats;' (#41) from stats_update into master
Reviewed-on: #41
2022-06-09 23:57:18 +02:00
Angelika Iskra
3591fedfa2 added points in stats; 2022-06-09 23:56:26 +02:00
050a0359b0 Merge pull request 'final attack version! \o/' (#40) from attack_v3 into master
Reviewed-on: #40
2022-06-09 23:26:20 +02:00
c6cc763fe1 final attack version! \o/ 2022-06-09 23:24:57 +02:00
08ea0e945e Merge pull request 'decision_tree_impl' (#39) from decision_tree_impl into master
Reviewed-on: #39
2022-06-09 22:33:23 +02:00
cb9b8e6b2d Merge pull request 'actually WORKING!!!!! one-direction attack with no ghost-knights (only knights, no monsters and fortress)' (#38) from knights_attack_v2 into master
Reviewed-on: #38
2022-06-09 22:31:50 +02:00
GeorgeTom17
dfa408d5fa new csv for decision tree 2022-06-09 22:31:25 +02:00
GeorgeTom17
ebaf97d82c new csv for decision tree 2022-06-09 22:31:02 +02:00
8666a7dbf9 actually WORKING!!!!! one-direction attack with no ghost-knights (only knights, no monsters and fortress) 2022-06-09 22:29:44 +02:00
952e8663b4 Merge pull request 'removed number of fortresses from stats' (#37) from updated_fortress_count into master
Reviewed-on: #37
2022-06-09 20:39:24 +02:00
5f7fea24fb removed number of fortresses from stats 2022-06-09 20:37:46 +02:00
297bd19336 Merge pull request 'credits' (#36) from credits into master
Reviewed-on: #36
2022-06-09 19:04:29 +02:00
bab75274dc Merge pull request 'cnn' (#35) from cnn into master
Reviewed-on: #35
2022-06-09 14:49:55 +02:00
681bf08424 sprzatanie plikow 2022-06-09 14:47:47 +02:00
c8f0dc76b6 Merge branch 'master' of https://git.wmi.amu.edu.pl/s464965/WMICraft into cnn 2022-06-09 14:43:47 +02:00
e31364b21c fixed knights_hp + basic attack ^<>v (improvement in progress) 2022-06-08 12:51:09 +02:00
GeorgeTom17
1482730bee visual changes 2022-06-07 22:36:13 +02:00
GeorgeTom17
29aea5bec4 credits screen 2022-06-07 21:36:31 +02:00
9afd1f366a Merge pull request 'genetic_alg' (#34) from genetic_alg into master
Reviewed-on: #34
2022-06-06 15:19:58 +02:00
Angelika Iskra
6ddfddb2fd fix monsters count in fitness func; 2022-06-06 14:59:24 +02:00
korzepadawid
3f68f4c8a6 bug fix 2022-06-05 10:57:20 +02:00
59a8c49b2d Merge pull request 'fixed bugs in genetic alg; modified fitness;' (#33) from genetic_alg_angela into genetic_alg
Reviewed-on: #33
2022-06-02 13:33:38 +02:00
Angelika Iskra
fd4b34eed7 fixed bugs in genetic alg; modified fitness; 2022-06-02 13:32:59 +02:00
08329f187b Merge pull request 'fix monsters count;' (#32) from genetic_alg_angela into genetic_alg
Reviewed-on: #32
2022-06-02 01:31:50 +02:00
Angelika Iskra
fd081d5c56 fix monsters count; 2022-06-02 01:31:26 +02:00
ee7a324e5d Merge pull request 'genetic_alg_angela' (#31) from genetic_alg_angela into genetic_alg
Reviewed-on: #31
2022-06-02 00:52:53 +02:00
Angelika Iskra
10e61e724c setup genetic alg; 2022-06-02 00:52:16 +02:00
Angelika Iskra
f255178162 fix file not found error; 2022-06-01 19:52:16 +02:00
d80e83cecf Merge pull request 'fixed return type' (#30) from hotfix into genetic_alg
Reviewed-on: #30
2022-05-31 22:13:46 +02:00
korzepadawid
ea105ad140 fixed return type 2022-05-31 22:13:16 +02:00
32847593e6 Merge pull request 'counting islands with dfs' (#29) from genetic_alg_fitness into genetic_alg
Reviewed-on: #29
2022-05-31 21:37:26 +02:00
korzepadawid
f1f2302acd counting islands with dfs 2022-05-31 21:34:31 +02:00
korzepadawid
e89f564dd6 saving sands, trees, monsters etc positions 2022-05-31 15:50:42 +02:00
162e2df890 FINISH 95% test 99% train 2022-05-31 09:25:36 +02:00
Angelika Iskra
e9ef300dde import and export map; 2022-05-31 01:03:00 +02:00
korzepadawid
c7c1feb82c separated code 2022-05-30 23:34:28 +02:00
korzepadawid
7a9d685701 Genome class responsible for keeping grid and lists of positions 2022-05-30 23:27:31 +02:00
korzepadawid
c06624d79c example genome generation 2022-05-29 23:13:45 +02:00
8d73a85707 poprawki 2022-05-27 01:39:52 +02:00
b6ba817d55 update 2022-05-27 01:38:20 +02:00
97628965f1 Merge pull request 'cnn' (#28) from cnn into master
Reviewed-on: #28
2022-05-25 19:57:08 +02:00
42 changed files with 1787 additions and 136 deletions

View File

@ -4,10 +4,11 @@ import heapq
from dataclasses import dataclass, field from dataclasses import dataclass, field
from typing import Tuple, Optional, List from typing import Tuple, Optional, List
from algorithms.genetic.const import MAP_ALIASES
from common.constants import ROWS, COLUMNS, LEFT, RIGHT, UP, DOWN from common.constants import ROWS, COLUMNS, LEFT, RIGHT, UP, DOWN
from common.helpers import directions from common.helpers import directions
EMPTY_FIELDS = ['s', 'g', ' '] EMPTY_FIELDS = [MAP_ALIASES.get("SAND"), MAP_ALIASES.get("GRASS"), ' ']
TURN_LEFT = 'TURN_LEFT' TURN_LEFT = 'TURN_LEFT'
TURN_RIGHT = 'TURN_RIGHT' TURN_RIGHT = 'TURN_RIGHT'

View File

@ -0,0 +1,142 @@
from dataclasses import dataclass
import numpy as np
from const import *
from typing import List, Dict, Tuple
import numpy.typing as npt
@dataclass
class Position:
row: int
col: int
@dataclass
class Area:
position: Position
width: int
height: int
AREAS_TO_CROSS = [
# up above left knights spawn
Area(position=Position(row=0, col=0),
width=KNIGHTS_SPAWN_WIDTH,
height=LEFT_KNIGHTS_SPAWN_FIRST_ROW),
# down below left knights spawn
Area(position=Position(row=LEFT_KNIGHTS_SPAWN_FIRST_ROW + KNIGHTS_SPAWN_HEIGHT, col=0),
width=KNIGHTS_SPAWN_WIDTH,
height=ROWS - LEFT_KNIGHTS_SPAWN_FIRST_ROW - KNIGHTS_SPAWN_HEIGHT),
# between left knights spawn and castle
Area(position=Position(row=0, col=KNIGHTS_SPAWN_WIDTH),
width=CASTLE_SPAWN_FIRST_COL - KNIGHTS_SPAWN_WIDTH,
height=ROWS),
# up above castle
Area(position=Position(row=0, col=CASTLE_SPAWN_FIRST_COL),
width=2,
height=CASTLE_SPAWN_FIRST_ROW),
# down below castle
Area(position=Position(row=CASTLE_SPAWN_FIRST_ROW + 2, col=CASTLE_SPAWN_FIRST_COL),
width=2,
height=ROWS - CASTLE_SPAWN_FIRST_ROW - 2),
# between castle and right knights spawn
Area(position=Position(row=0, col=CASTLE_SPAWN_FIRST_COL + 2),
width=RIGHT_KNIGHTS_SPAWN_FIRST_COL - CASTLE_SPAWN_FIRST_COL - 2,
height=ROWS),
# up above right knights spawn
Area(position=Position(row=0, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
width=KNIGHTS_SPAWN_WIDTH,
height=RIGHT_KNIGHTS_SPAWN_FIRST_ROW),
# down below right knights spawn
Area(position=Position(row=RIGHT_KNIGHTS_SPAWN_FIRST_ROW + KNIGHTS_SPAWN_HEIGHT, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
width=KNIGHTS_SPAWN_WIDTH,
height=ROWS - RIGHT_KNIGHTS_SPAWN_FIRST_ROW - KNIGHTS_SPAWN_HEIGHT),
]
def dfs(grid: npt.NDArray, visited: Dict[Tuple[int, int], bool], position: Position, rows: int, cols: int) -> None:
visited[(position.row, position.col)] = True
row_vector = [0, 0, 1, -1]
col_vector = [-1, 1, 0, 0]
neighbours = []
for i in range(4):
rr = position.row + row_vector[i]
cc = position.col + col_vector[i]
if rr < 0 or rr >= ROWS:
continue
elif cc < 0 or cc >= COLUMNS:
continue
else:
p = Position(rr, cc)
if (p.row, p.col) in visited:
neighbours.append(p)
for neighbour in neighbours:
if not visited[(neighbour.row, neighbour.col)]:
dfs(grid, visited, neighbour, rows, cols)
def get_islands(grid: npt.NDArray, positions: List[Position], rows: int = ROWS, cols: int = COLUMNS) -> List[Position]:
"""it returns list of all islands roots"""
visited = {}
for position in positions:
visited[(position.row, position.col)] = False
islands = 0
roots = []
for position in positions:
if not visited[(position.row, position.col)]:
dfs(grid, visited, position, rows, cols)
roots.append(position)
islands += 1
return roots
def find_neighbours(grid: npt.NDArray, col: int, row: int) -> List[Position]:
dr = [-1, 1, 0, 0]
dc = [0, 0, -1, 1]
neighbours = []
for i in range(4):
rr = row + dr[i]
cc = col + dc[i]
if 0 <= rr < ROWS and 0 <= cc < COLUMNS and grid[rr][cc] == MAP_ALIASES.get('GRASS'):
neighbours.append(Position(row=rr, col=cc))
return neighbours
def get_tiles_positions(grid: npt.NDArray):
sands = []
trees = []
waters = []
monsters = []
for row_num in range(len(grid)):
for col_num in range(len(grid[row_num])):
if grid[row_num][col_num] == MAP_ALIASES.get('WATER'):
waters.append(Position(row=row_num, col=col_num))
elif grid[row_num][col_num] == MAP_ALIASES.get('TREE'):
trees.append(Position(row=row_num, col=col_num))
elif grid[row_num][col_num] == MAP_ALIASES.get('SAND'):
sands.append(Position(row=row_num, col=col_num))
elif grid[row_num][col_num] == MAP_ALIASES.get('MONSTER'):
monsters.append(Position(row=row_num, col=col_num))
return sands, trees, waters, monsters

View File

@ -0,0 +1,29 @@
# map config
KNIGHTS_PER_TEAM_COUNT = 4
SAND_COUNT = 21
WATER_COUNT = 21
TREE_COUNT = 37
MONSTERS_COUNT = 2
CASTLES_COUNT = 1
ROWS = 19
COLUMNS = 24
KNIGHTS_SPAWN_WIDTH = 4
KNIGHTS_SPAWN_HEIGHT = 7
LEFT_KNIGHTS_SPAWN_FIRST_ROW = 6
LEFT_KNIGHTS_SPAWN_FIRST_COL = 0
RIGHT_KNIGHTS_SPAWN_FIRST_ROW = 6
RIGHT_KNIGHTS_SPAWN_FIRST_COL = 20
CASTLE_SPAWN_FIRST_ROW = 7
CASTLE_SPAWN_FIRST_COL = 11
# map aliases
MAP_ALIASES = {
"GRASS": 0,
"SAND": 1,
"WATER": 2,
"TREE": 3,
"MONSTER": 4,
"CASTLE": 5,
"KNIGHT_RED": 6,
"KNIGHT_BLUE": 7,
}

View File

@ -0,0 +1,166 @@
import math
import random
from copy import deepcopy
from random import randrange
from typing import List
import numpy as np
import numpy.typing as npt
from common import Position, get_islands, AREAS_TO_CROSS, find_neighbours, get_tiles_positions
from const import *
class Genome:
grid: npt.NDArray
knights_red: List[Position]
knights_blue: List[Position]
waters: List[Position]
trees: List[Position]
sands: List[Position]
monsters: List[Position]
fitness: int
sand_islands: List[Position]
tree_islands: List[Position]
water_islands: List[Position]
def __init__(self):
self.grid = np.zeros((ROWS, COLUMNS), dtype=int)
self.fitness = 0
self.knights_red = spawn_objects_in_given_area(
grid=self.grid,
object_alias=MAP_ALIASES.get("KNIGHT_RED"),
objects_count=KNIGHTS_PER_TEAM_COUNT,
spawn_position_start=Position(row=LEFT_KNIGHTS_SPAWN_FIRST_ROW, col=LEFT_KNIGHTS_SPAWN_FIRST_COL),
width=KNIGHTS_SPAWN_WIDTH,
height=KNIGHTS_SPAWN_HEIGHT
)
self.knights_blue = spawn_objects_in_given_area(
grid=self.grid,
object_alias=MAP_ALIASES.get("KNIGHT_BLUE"),
objects_count=KNIGHTS_PER_TEAM_COUNT,
spawn_position_start=Position(row=RIGHT_KNIGHTS_SPAWN_FIRST_ROW, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
width=KNIGHTS_SPAWN_WIDTH,
height=KNIGHTS_SPAWN_HEIGHT
)
spawn_objects_in_given_area(
grid=self.grid,
object_alias=MAP_ALIASES.get("CASTLE"),
objects_count=4,
spawn_position_start=Position(row=CASTLE_SPAWN_FIRST_ROW, col=CASTLE_SPAWN_FIRST_COL),
width=2,
height=2
)
self.waters = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("WATER"),
objects_count=WATER_COUNT)
self.trees = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("TREE"),
objects_count=TREE_COUNT)
self.sands = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("SAND"),
objects_count=SAND_COUNT)
self.monsters = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("MONSTER"),
objects_count=MONSTERS_COUNT)
self.sand_islands = get_islands(self.grid, self.sands)
self.tree_islands = get_islands(self.grid, self.trees)
self.water_islands = get_islands(self.grid, self.waters)
def update_map(self):
self.sands, self.trees, self.waters, self.monsters = get_tiles_positions(self.grid)
self.sand_islands = get_islands(self.grid, self.sands)
self.tree_islands = get_islands(self.grid, self.trees)
self.water_islands = get_islands(self.grid, self.waters)
def calc_fitness(self):
score = SAND_COUNT + TREE_COUNT + WATER_COUNT
score = score - len(self.sand_islands) - len(self.tree_islands) - len(self.water_islands)
sands, trees, waters, monsters = get_tiles_positions(self.grid)
if len(monsters) != MONSTERS_COUNT:
self.fitness = 0
return
if len(sands) < SAND_COUNT or len(trees) < TREE_COUNT or len(waters) < WATER_COUNT:
self.fitness = 5
return
self.fitness = score
def crossover(self, partner):
# replace a randomly selected part of the grid with partner's part
child = Genome()
child.grid = deepcopy(self.grid)
area_to_cross = random.choice(AREAS_TO_CROSS)
for row in range(area_to_cross.position.row, area_to_cross.position.row + area_to_cross.height):
for col in range(area_to_cross.position.col, area_to_cross.position.col + area_to_cross.width):
child.grid[row][col] = partner.grid[row][col]
child.update_map()
return child
def mutate(self, mutation_rate: float):
# remove 1 item from a random island and add a neighbor to another island
if random.random() < mutation_rate:
# select islands of the same, random type
islands_of_same_type = random.choice([self.sand_islands, self.tree_islands, self.water_islands])
random_index = random.randint(0, len(islands_of_same_type) - 1)
island = islands_of_same_type[random_index]
next_island = islands_of_same_type[(random_index + 1) % len(islands_of_same_type)]
free_tiles_nearby = find_neighbours(self.grid, next_island.col, next_island.row)
tile_type = self.grid[island.row][island.col]
self.grid[island.row][island.col] = MAP_ALIASES.get('GRASS')
# todo: if there are no free tiles around then randomize another next_island
if len(free_tiles_nearby) > 0:
random_free_tile = random.choice(free_tiles_nearby)
island.row = random_free_tile.row
island.col = random_free_tile.col
self.grid[island.row][island.col] = tile_type
self.update_map()
def is_empty(grid: npt.NDArray, position: Position) -> bool:
return grid[position.row, position.col] in [MAP_ALIASES.get("GRASS"), MAP_ALIASES.get("SAND")]
def is_invalid_area(spawn_position_start, height, width) -> bool:
return spawn_position_start.row + height - 1 < 0 or \
spawn_position_start.row + height - 1 >= ROWS or \
spawn_position_start.col + width - 1 < 0 or \
spawn_position_start.col + width - 1 >= COLUMNS
def spawn_objects_in_given_area(grid: npt.NDArray,
object_alias: str,
objects_count: int = 1,
spawn_position_start: Position = Position(row=0, col=0),
width: int = COLUMNS,
height: int = ROWS) -> List[Position]:
if is_invalid_area(spawn_position_start, height, width):
raise ValueError("Invalid spawn area")
objects_remaining = int(objects_count)
positions = []
while objects_remaining > 0:
row = randrange(spawn_position_start.row, spawn_position_start.row + height)
col = randrange(spawn_position_start.col, spawn_position_start.col + width)
position = Position(row=row, col=col)
if is_empty(grid=grid, position=position):
grid[position.row, position.col] = object_alias
positions.append(position)
objects_remaining -= 1
return positions

View File

@ -0,0 +1,26 @@
from algorithms.genetic.genome import Genome
from algorithms.genetic.map_importer_exporter import export_map
from population import Population
def main() -> None:
population_size = 500
mutation_rate = 0.3
population = Population(mutation_rate, population_size, 55)
while not population.evaluate():
# create next generation
population.generate()
# calc fitness
population.calc_fitness()
print(population.best_genome.grid)
print("Fitness of the best: ", population.best_genome.fitness)
export_map(population.best_genome.grid)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,42 @@
import json
import random
import string
from datetime import datetime
from pathlib import Path
import numpy
import numpy.typing as npt
from os import listdir
from os.path import isfile, join
# Save map to file
def export_map(grid: npt.NDArray):
json_data = {"map": grid.tolist()}
now = datetime.now()
file_name = "map_" + now.strftime("%Y_%m_%d_%H_%M_%S") + ".json"
path = Path("../../resources/maps/")
file_to_open = path / file_name
with open(file_to_open, "w+") as write_file:
json.dump(json_data, write_file)
print("Saved map to file " + file_name)
def import_random_map() -> object:
path = "resources/maps"
files = [f for f in listdir(path) if isfile(join(path, f))]
random_map_name = random.choice(files)
return import_map(random_map_name)
# Read map from file
def import_map(file_name: string) -> object:
file_to_open = "resources/maps/" + file_name
with open(file_to_open, "r") as read_file:
print("Reading map from file " + file_name)
decoded_json = json.load(read_file)
decoded_grid = numpy.asarray(decoded_json["map"])
print(decoded_grid)
return decoded_grid.tolist()

View File

@ -0,0 +1,81 @@
import random
from typing import List
import numpy as np
import numpy.typing as npt
from genome import Genome
class Population:
population: List[Genome] = [] # array to hold the current population
mating_pool: List[Genome] = [] # array which we will use for our "mating pool"
generations: int = 0 # number of generations
finished: bool = False # are we finished evolving?
mutation_rate: float
perfect_score: int
best_genome: Genome
def __init__(self, mutation_rate, population_size, perfect_score=20):
self.mutation_rate = mutation_rate
self.perfect_score = perfect_score
for i in range(0, population_size):
new_genome = Genome()
new_genome.calc_fitness()
self.population.append(new_genome)
# create a new generation
def generate(self):
max_fitness = 0
for genome in self.population:
if genome.fitness > max_fitness:
max_fitness = genome.fitness
print("Max fitness of generation " + str(self.generations) + " = " + str(max_fitness))
# refill the population with children from the mating pool
new_population = []
for genome in self.population:
partner_a = self.accept_reject(max_fitness)
partner_b = self.accept_reject(max_fitness)
child = partner_a.crossover(partner_b)
child.mutate(self.mutation_rate)
new_population.append(child)
self.population = new_population
self.generations += 1
# select random with correct probability from population
def accept_reject(self, max_fitness: int):
safe_flag = 0
while safe_flag < 10000:
partner = random.choice(self.population)
r = random.randint(0, max_fitness)
if r < partner.fitness:
return partner
safe_flag += 1
# compute the current "most fit" member of the population
def evaluate(self):
record = 0
best_index = 0
for index in range(len(self.population)):
genome = self.population[index]
if genome.fitness > record:
record = genome.fitness
best_index = index
self.best_genome = self.population[best_index]
if record >= self.perfect_score:
self.finished = True
return self.finished
def calc_fitness(self):
for genome in self.population:
genome.calc_fitness()

View File

View File

@ -1,9 +1,11 @@
import torch import torch
import pytorch_lightning as pl import pytorch_lightning as pl
import torch.nn as nn import torch.nn as nn
from torch.optim import Adam from torch.optim import SGD, Adam, lr_scheduler
import torch.nn.functional as F import torch.nn.functional as F
from common.constants import BATCH_SIZE, LEARNING_RATE from torch.utils.data import DataLoader
from watersandtreegrass import WaterSandTreeGrass
from common.constants import DEVICE, BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE, SETUP_PHOTOS, ID_TO_CLASS
class NeuralNetwork(pl.LightningModule): class NeuralNetwork(pl.LightningModule):
@ -14,9 +16,11 @@ class NeuralNetwork(pl.LightningModule):
self.maxpool1 = nn.MaxPool2d((2, 2), stride=2) self.maxpool1 = nn.MaxPool2d((2, 2), stride=2)
self.conv2 = nn.Conv2d(24, 48, (3, 3), padding=1) self.conv2 = nn.Conv2d(24, 48, (3, 3), padding=1)
self.relu2 = nn.ReLU() self.relu2 = nn.ReLU()
self.fc1 = nn.Linear(48*18*18, 4) self.fc1 = nn.Linear(48*18*18, 800)
self.relu3 = nn.ReLU() self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(500, num_classes) self.fc2 = nn.Linear(800, 400)
self.relu4 = nn.ReLU()
self.fc3 = nn.Linear(400, 4)
self.logSoftmax = nn.LogSoftmax(dim=1) self.logSoftmax = nn.LogSoftmax(dim=1)
self.batch_size = batch_size self.batch_size = batch_size
@ -30,6 +34,10 @@ class NeuralNetwork(pl.LightningModule):
x = self.relu2(x) x = self.relu2(x)
x = x.reshape(x.shape[0], -1) x = x.reshape(x.shape[0], -1)
x = self.fc1(x) x = self.fc1(x)
x = self.relu3(x)
x = self.fc2(x)
x = self.relu4(x)
x = self.fc3(x)
x = self.logSoftmax(x) x = self.logSoftmax(x)
return x return x

View File

@ -1,53 +1,17 @@
import torch import torch
import common.helpers import common.helpers
from algorithms.neural_network.neural_network import NeuralNetwork
from algorithms.neural_network.watersandtreegrass import WaterSandTreeGrass
from common.constants import DEVICE, BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE, SETUP_PHOTOS, ID_TO_CLASS from common.constants import DEVICE, BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE, SETUP_PHOTOS, ID_TO_CLASS
from watersandtreegrass import WaterSandTreeGrass
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from neural_network import NeuralNetwork
from torchvision.io import read_image, ImageReadMode from torchvision.io import read_image, ImageReadMode
import torch.nn as nn import torch.nn as nn
from torch.optim import Adam from torch.optim import Adam
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import pytorch_lightning as pl import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.callbacks import EarlyStopping
import torchvision.transforms.functional as F
from PIL import Image
def train(model):
model = model.to(DEVICE)
model.train()
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)
criterion = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=LEARNING_RATE)
for epoch in range(NUM_EPOCHS):
for batch_idx, (data, targets) in enumerate(train_loader):
data = data.to(device=DEVICE)
targets = targets.to(device=DEVICE)
scores = model(data)
loss = criterion(scores, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % 4 == 0:
print("epoch: %d loss: %.4f" % (epoch, loss.item()))
print("FINISHED TRAINING!")
torch.save(model.state_dict(), "./learnednetwork.pth")
print("Checking accuracy for the train set.")
check_accuracy(train_loader)
print("Checking accuracy for the test set.")
check_accuracy(test_loader)
print("Checking accuracy for the tiles.")
check_accuracy_tiles()
def check_accuracy_tiles(): def check_accuracy_tiles():
@ -95,12 +59,13 @@ def check_accuracy_tiles():
def what_is_it(img_path, show_img=False): def what_is_it(img_path, show_img=False):
image = read_image(img_path, mode=ImageReadMode.RGB) image = Image.open(img_path).convert('RGB')
if show_img: if show_img:
plt.imshow(plt.imread(img_path)) plt.imshow(image)
plt.show() plt.show()
image = SETUP_PHOTOS(image).unsqueeze(0) image = SETUP_PHOTOS(image).unsqueeze(0)
model = NeuralNetwork.load_from_checkpoint('D:/DEV/UAM/WMICraft/algorithms/neural_network/lightning_logs/version_3/checkpoints/epoch=8-step=810.ckpt') model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_20/checkpoints/epoch=3-step=324.ckpt')
with torch.no_grad(): with torch.no_grad():
model.eval() model.eval()
@ -108,18 +73,53 @@ def what_is_it(img_path, show_img=False):
return ID_TO_CLASS[idx] return ID_TO_CLASS[idx]
# CNN = NeuralNetwork() def check_accuracy(tset):
# common.helpers.createCSV() model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_23/checkpoints/epoch=3-step=324.ckpt')
num_correct = 0
num_samples = 0
model = model.to(DEVICE)
model.eval()
#trainer = pl.Trainer(accelerator='gpu', devices=1, callbacks=[EarlyStopping('val_loss')], max_epochs=NUM_EPOCHS) with torch.no_grad():
# trainer = pl.Trainer(accelerator='cpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS) for photo, label in tset:
# photo = photo.to(DEVICE)
# trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS) label = label.to(DEVICE)
# testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
# train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True) scores = model(photo)
# test_loader = DataLoader(testset, batch_size=BATCH_SIZE) predictions = scores.argmax(dim=1)
# num_correct += (predictions == label).sum()
# trainer.fit(CNN, train_loader, test_loader) num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}%')
def check_accuracy_data():
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
print("Accuracy of train_set:")
check_accuracy(train_loader)
print("Accuracy of test_set:")
check_accuracy(test_loader)
#CNN = NeuralNetwork()
#common.helpers.createCSV()
#trainer = pl.Trainer(accelerator='gpu', callbacks=EarlyStopping('val_loss'), devices=1, max_epochs=NUM_EPOCHS)
#trainer = pl.Trainer(accelerator='gpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
#trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
#testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
#train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
#test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
#trainer.fit(CNN, train_loader, test_loader)
#trainer.tune(CNN, train_loader, test_loader) #trainer.tune(CNN, train_loader, test_loader)
#print(what_is_it('../../resources/textures/grass2.png', True))
#check_accuracy_data()
#check_accuracy_tiles() #check_accuracy_tiles()
#print(what_is_it('../../resources/textures/sand.png', True))

View File

@ -3,6 +3,7 @@ from torch.utils.data import Dataset
import pandas as pd import pandas as pd
from torchvision.io import read_image, ImageReadMode from torchvision.io import read_image, ImageReadMode
from common.helpers import createCSV from common.helpers import createCSV
from PIL import Image
class WaterSandTreeGrass(Dataset): class WaterSandTreeGrass(Dataset):
@ -15,7 +16,8 @@ class WaterSandTreeGrass(Dataset):
return len(self.img_labels) return len(self.img_labels)
def __getitem__(self, idx): def __getitem__(self, idx):
image = read_image(self.img_labels.iloc[idx, 0], mode=ImageReadMode.RGB) image = Image.open(self.img_labels.iloc[idx, 0]).convert('RGB')
label = torch.tensor(int(self.img_labels.iloc[idx, 1])) label = torch.tensor(int(self.img_labels.iloc[idx, 1]))
if self.transform: if self.transform:

View File

@ -6,7 +6,7 @@ GAME_TITLE = 'WMICraft'
WINDOW_HEIGHT = 800 WINDOW_HEIGHT = 800
WINDOW_WIDTH = 1360 WINDOW_WIDTH = 1360
FPS_COUNT = 60 FPS_COUNT = 60
TURN_INTERVAL = 500 TURN_INTERVAL = 200
GRID_CELL_PADDING = 5 GRID_CELL_PADDING = 5
GRID_CELL_SIZE = 36 GRID_CELL_SIZE = 36
@ -77,16 +77,15 @@ BAR_HEIGHT_MULTIPLIER = 0.1
#NEURAL_NETWORK #NEURAL_NETWORK
LEARNING_RATE = 0.00478630092322638 LEARNING_RATE = 0.000630957344480193
BATCH_SIZE = 64 BATCH_SIZE = 64
NUM_EPOCHS = 20 NUM_EPOCHS = 9
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print("Using ", DEVICE) print("Using ", DEVICE)
CLASSES = ['grass', 'sand', 'tree', 'water'] CLASSES = ['grass', 'sand', 'tree', 'water']
SETUP_PHOTOS = transforms.Compose([ SETUP_PHOTOS = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(), transforms.ToTensor(),
transforms.Resize((36, 36)), transforms.Resize((36, 36)),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

View File

@ -1,6 +1,8 @@
from typing import Tuple, List from typing import Tuple, List
import pygame import pygame
from algorithms.genetic.const import MAP_ALIASES
from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE, COLUMNS, ROWS, CLASSES, CLASS_TO_ID from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE, COLUMNS, ROWS, CLASSES, CLASS_TO_ID
import csv import csv
import os import os
@ -99,7 +101,7 @@ def castle_neighbors(map, castle_bottom_right_row, castle_bottom_right_col):
return neighbors return neighbors
def find_neighbours(grid: List[List[str]], col: int, row: int) -> List[Tuple[int, int]]: def find_neighbours(grid: List[List[int]], col: int, row: int) -> List[Tuple[int, int]]:
dr = [-1, 1, 0, 0] dr = [-1, 1, 0, 0]
dc = [0, 0, -1, 1] dc = [0, 0, -1, 1]
@ -111,7 +113,7 @@ def find_neighbours(grid: List[List[str]], col: int, row: int) -> List[Tuple[int
if rr < 0 or cc < 0: continue if rr < 0 or cc < 0: continue
if rr >= ROWS or cc >= COLUMNS: continue if rr >= ROWS or cc >= COLUMNS: continue
if grid[rr][cc] not in ['g', 's', '.']: continue if grid[rr][cc] not in [MAP_ALIASES.get("GRASS"), MAP_ALIASES.get("SAND"), '.']: continue
neighbours.append((rr, cc)) neighbours.append((rr, cc))
return neighbours return neighbours

File diff suppressed because it is too large Load Diff

View File

@ -299,4 +299,4 @@ tower_dist;mob1_dist;mob2_dist;opp1_dist;opp2_dist;opp3_dist;opp4_dist;agent_hp;
29;25;30;19;35;38;33;6;68;5;1;0;5;11;6;mob1 29;25;30;19;35;38;33;6;68;5;1;0;5;11;6;mob1
23;43;41;25;27;26;19;7;12;8;3;4;10;11;9;tower 23;43;41;25;27;26;19;7;12;8;3;4;10;11;9;tower
7;9;18;31;36;21;16;4;23;8;4;9;8;11;5;tower 7;9;18;31;36;21;16;4;23;8;4;9;8;11;5;tower
35;21;39;36;36;37;33;10;41;9;4;1;0;7;0;mob1 35;21;39;36;36;37;33;10;41;9;4;1;0;7;0;mob1
1 tower_dist mob1_dist mob2_dist opp1_dist opp2_dist opp3_dist opp4_dist agent_hp tower_hp mob1_hp mob2_hp opp1_hp opp2_hp opp3_hp opp4_hp goal
299 29 25 30 19 35 38 33 6 68 5 1 0 5 11 6 mob1
300 23 43 41 25 27 26 19 7 12 8 3 4 10 11 9 tower
301 7 9 18 31 36 21 16 4 23 8 4 9 8 11 5 tower
302 35 21 39 36 36 37 33 10 41 9 4 1 0 7 0 mob1

View File

@ -26,7 +26,7 @@ def parse_idx_of_opp_or_monster(s: str) -> int:
class DecisionTree: class DecisionTree:
def __init__(self) -> None: def __init__(self) -> None:
data_frame = pd.read_csv('learning/dataset_tree.csv', delimiter=';') data_frame = pd.read_csv('learning/dataset_tree_1000.csv', delimiter=';')
unlabeled_goals = data_frame['goal'] unlabeled_goals = data_frame['goal']
self.goals_label_encoder = LabelEncoder() self.goals_label_encoder = LabelEncoder()
self.goals = self.goals_label_encoder.fit_transform(unlabeled_goals) self.goals = self.goals_label_encoder.fit_transform(unlabeled_goals)
@ -34,7 +34,7 @@ class DecisionTree:
self.model = DecisionTreeClassifier(criterion='entropy') self.model = DecisionTreeClassifier(criterion='entropy')
self.model.fit(self.train_set.values, self.goals) self.model.fit(self.train_set.values, self.goals)
def predict_move(self, grid: List[List[str]], current_knight: Knight, castle: Castle, monsters: List[Monster], def predict_move(self, grid: List[List[int]], current_knight: Knight, castle: Castle, monsters: List[Monster],
opponents: List[Knight]) -> \ opponents: List[Knight]) -> \
List[Tuple[int, int]]: List[Tuple[int, int]]:
distance_to_castle = manhattan_distance(current_knight.position, castle.position) distance_to_castle = manhattan_distance(current_knight.position, castle.position)
@ -42,14 +42,15 @@ class DecisionTree:
monsters_parsed = [] monsters_parsed = []
for monster in monsters: for monster in monsters:
monsters_parsed.append((manhattan_distance(current_knight.position, monster.position), parse_hp( monsters_parsed.append((manhattan_distance(current_knight.position, monster.position), parse_hp(
monster.current_hp))) monster.health_bar.current_hp)))
opponents_parsed = [] opponents_parsed = []
for opponent in opponents: for opponent in opponents:
opponents_parsed.append( opponents_parsed.append(
(manhattan_distance(current_knight.position, opponent.position), parse_hp(opponent.health_bar.current_hp))) (manhattan_distance(current_knight.position, opponent.position),
parse_hp(opponent.health_bar.current_hp)))
prediction = self.get_prediction(tower_dist=distance_to_castle, tower_hp=castle.current_hp, prediction = self.get_prediction(tower_dist=distance_to_castle, tower_hp=castle.health_bar.current_hp,
mob1_dist=monsters_parsed[0][0], mob1_hp=monsters_parsed[0][1], mob1_dist=monsters_parsed[0][0], mob1_hp=monsters_parsed[0][1],
mob2_dist=monsters_parsed[1][0], mob2_hp=monsters_parsed[1][1], mob2_dist=monsters_parsed[1][0], mob2_hp=monsters_parsed[1][1],
opp1_dist=opponents_parsed[0][0], opp1_hp=opponents_parsed[0][1], opp1_dist=opponents_parsed[0][0], opp1_hp=opponents_parsed[0][1],
@ -57,7 +58,7 @@ class DecisionTree:
opp3_dist=opponents_parsed[2][0], opp3_hp=opponents_parsed[2][1], opp3_dist=opponents_parsed[2][0], opp3_hp=opponents_parsed[2][1],
opp4_dist=opponents_parsed[3][0], opp4_hp=opponents_parsed[3][1], opp4_dist=opponents_parsed[3][0], opp4_hp=opponents_parsed[3][1],
agent_hp=current_knight.health_bar.current_hp) agent_hp=current_knight.health_bar.current_hp)
print(prediction) print(f'Prediction = {prediction}')
if prediction == 'tower': # castle... if prediction == 'tower': # castle...
return castle_neighbors(grid, castle_bottom_right_row=castle.position[0], return castle_neighbors(grid, castle_bottom_right_row=castle.position[0],
castle_bottom_right_col=castle.position[1]) castle_bottom_right_col=castle.position[1])

View File

@ -45,6 +45,7 @@ class Game:
# create level # create level
level.create_map() level.create_map()
stats = Stats(self.screen, level.list_knights_blue, level.list_knights_red) stats = Stats(self.screen, level.list_knights_blue, level.list_knights_red)
level.setup_stats(stats)
print_numbers_flag = False print_numbers_flag = False
running = True running = True
@ -61,8 +62,8 @@ class Game:
if event.key == pygame.K_n: if event.key == pygame.K_n:
print_numbers_flag = not print_numbers_flag print_numbers_flag = not print_numbers_flag
# if event.type == NEXT_TURN: # is called every 'TURN_INTERVAL' milliseconds if event.type == NEXT_TURN: # is called every 'TURN_INTERVAL' milliseconds
# level.handle_turn() level.handle_turn()
stats.update() stats.update()
logs.draw() logs.draw()

View File

@ -10,7 +10,7 @@ class KnightsQueue:
def dequeue_knight(self): def dequeue_knight(self):
if self.both_teams_alive(): if self.both_teams_alive():
knight = self.queues[self.team_idx_turn].popleft() knight = self.queues[self.team_idx_turn].popleft()
if knight.max_hp <= 0: if knight.health_bar.current_hp <= 0:
return self.dequeue_knight() return self.dequeue_knight()
else: else:
self.queues[self.team_idx_turn].append(knight) self.queues[self.team_idx_turn].append(knight)

View File

@ -3,11 +3,11 @@ import random
import pygame import pygame
from algorithms.a_star import a_star, State, TURN_RIGHT, TURN_LEFT, FORWARD from algorithms.a_star import a_star, State, TURN_RIGHT, TURN_LEFT, FORWARD
from algorithms.neural_network.neural_network_interface import what_is_it from algorithms.genetic.const import MAP_ALIASES
from algorithms.genetic.map_importer_exporter import import_random_map
from common.constants import * from common.constants import *
from learning.decision_tree import DecisionTree from learning.decision_tree import DecisionTree
from logic.knights_queue import KnightsQueue from logic.knights_queue import KnightsQueue
from logic.spawner import Spawner
from models.castle import Castle from models.castle import Castle
from models.knight import Knight from models.knight import Knight
from models.monster import Monster from models.monster import Monster
@ -22,7 +22,7 @@ class Level:
# sprite group setup # sprite group setup
self.sprites = pygame.sprite.LayeredUpdates() self.sprites = pygame.sprite.LayeredUpdates()
self.map = [['g' for _ in range(COLUMNS)] for y in range(ROWS)] self.map = []
self.list_knights_blue = [] self.list_knights_blue = []
self.list_knights_red = [] self.list_knights_red = []
@ -31,29 +31,20 @@ class Level:
self.knights_queue = None self.knights_queue = None
self.stats = None
def setup_stats(self, stats):
self.stats = stats
def add_points(self, team, points_to_add):
if self.stats is not None:
self.stats.add_points(team, points_to_add)
def create_map(self): def create_map(self):
print("Create map") self.map = import_random_map()
print(what_is_it('D:/DEV/UAM/WMICraft/resources/textures/t2.jpg')) self.setup_base_tiles()
# self.generate_map() self.setup_objects()
# self.setup_base_tiles() self.knights_queue = KnightsQueue(self.list_knights_blue, self.list_knights_red)
# self.setup_objects()
# self.knights_queue = KnightsQueue(self.list_knights_blue, self.list_knights_red)
def generate_map(self):
spawner = Spawner(self.map)
spawner.spawn_where_possible(['w' for _ in range(NBR_OF_WATER)])
spawner.spawn_where_possible(['t' for _ in range(NBR_OF_TREES)])
spawner.spawn_where_possible(['s' for _ in range(NBR_OF_SANDS)])
spawner.spawn_in_area(['k_b' for _ in range(4)], LEFT_KNIGHTS_SPAWN_FIRST_ROW, LEFT_KNIGHTS_SPAWN_FIRST_COL,
KNIGHTS_SPAWN_WIDTH, KNIGHTS_SPAWN_HEIGHT)
spawner.spawn_in_area(['k_r' for _ in range(4)], RIGHT_KNIGHTS_SPAWN_FIRST_ROW, RIGHT_KNIGHTS_SPAWN_FIRST_COL,
KNIGHTS_SPAWN_WIDTH, KNIGHTS_SPAWN_HEIGHT)
spawner.spawn_in_area(['c'], CASTLE_SPAWN_FIRST_ROW, CASTLE_SPAWN_FIRST_COL, CASTLE_SPAWN_WIDTH,
CASTLE_SPAWN_HEIGHT, 2)
spawner.spawn_where_possible(['m' for _ in range(NBR_OF_MONSTERS)])
def setup_base_tiles(self): def setup_base_tiles(self):
textures = [] textures = []
@ -66,15 +57,15 @@ class Level:
for col_index, col in enumerate(row): for col_index, col in enumerate(row):
# add base tiles, e.g. water, tree, grass # add base tiles, e.g. water, tree, grass
if col == "w": if col == MAP_ALIASES.get('WATER'):
texture_index = 5 texture_index = 5
texture_surface = textures[texture_index][1] texture_surface = textures[texture_index][1]
Tile((col_index, row_index), texture_surface, self.sprites, 'w') Tile((col_index, row_index), texture_surface, self.sprites, 'w')
elif col == "t": elif col == MAP_ALIASES.get('TREE'):
texture_index = 6 texture_index = 6
texture_surface = textures[texture_index][1] texture_surface = textures[texture_index][1]
Tile((col_index, row_index), texture_surface, self.sprites, 't') Tile((col_index, row_index), texture_surface, self.sprites, 't')
elif col == "s": elif col == MAP_ALIASES.get('SAND'):
texture_index = 4 texture_index = 4
texture_surface = textures[texture_index][1] texture_surface = textures[texture_index][1]
Tile((col_index, row_index), texture_surface, self.sprites) Tile((col_index, row_index), texture_surface, self.sprites)
@ -91,37 +82,148 @@ class Level:
for col_index, col in enumerate(row): for col_index, col in enumerate(row):
# add objects, e.g. knights, monsters, castle # add objects, e.g. knights, monsters, castle
if col == "k_b": if col == MAP_ALIASES.get('KNIGHT_BLUE'):
knight = Knight(self.screen, (col_index, row_index), self.sprites, "blue") knight = Knight(self.screen, (col_index, row_index), self.sprites, "blue")
self.map[row_index][col_index] = knight self.map[row_index][col_index] = knight
self.list_knights_blue.append(knight) self.list_knights_blue.append(knight)
elif col == "k_r": elif col == MAP_ALIASES.get('KNIGHT_RED'):
knight = Knight(self.screen, (col_index, row_index), self.sprites, "red") knight = Knight(self.screen, (col_index, row_index), self.sprites, "red")
self.map[row_index][col_index] = knight self.map[row_index][col_index] = knight
self.list_knights_red.append(knight) self.list_knights_red.append(knight)
elif col == "m": elif col == MAP_ALIASES.get('MONSTER'):
monster = Monster(self.screen, (col_index, row_index), self.sprites) monster = Monster(self.screen, (col_index, row_index), self.sprites)
self.map[row_index][col_index] = monster self.map[row_index][col_index] = monster
self.list_monsters.append(monster) self.list_monsters.append(monster)
elif col == "c": elif col == MAP_ALIASES.get('CASTLE'):
castle_count += 1 castle_count += 1
if castle_count == 4: if castle_count == 4:
castle = Castle(self.screen, (col_index, row_index), self.sprites) castle = Castle(self.screen, (col_index, row_index), self.sprites)
self.map[row_index][col_index] = castle self.map[row_index][col_index] = castle
self.list_castles.append(castle) self.list_castles.append(castle)
#def attack_knight(self, knights_list, positions, current_knight):
# op_pos_1 = current_knight.position[0] - 1, current_knight.position[1]
# positions.append(op_pos_1)
# op_pos_2 = current_knight.position[0], current_knight.position[1] - 1
# positions.append(op_pos_2)
# op_pos_3 = current_knight.position[0] + 1, current_knight.position[1]
# positions.append(op_pos_3)
# op_pos_4 = current_knight.position[0], current_knight.position[1] + 1
# positions.append(op_pos_4)
# for some_knight in knights_list:
# for some_position in positions:
# if (some_knight.position == some_position and some_knight.team != current_knight.team):
# some_knight.health_bar.take_dmg(current_knight.attack)
# if some_knight.health_bar.current_hp == 0:
# some_knight.kill()
# positions.clear()
def attack_knight_left(self, knights_list, current_knight):
position_left = current_knight.position[0] - 1, current_knight.position[1]
for some_knight in knights_list:
if (some_knight.position == position_left and some_knight.team != current_knight.team):
some_knight.health_bar.take_dmg(current_knight.attack)
if some_knight.health_bar.current_hp <= 0:
some_knight.kill()
self.add_points(current_knight.team, 5)
for monster in self.list_monsters:
if monster.position == position_left:
monster.health_bar.take_dmg(current_knight.attack)
if monster.health_bar.current_hp <= 0:
monster.kill()
self.add_points(current_knight.team, monster.points)
else:
current_knight.health_bar.take_dmg(monster.attack)
if current_knight.health_bar.current_hp <= 0:
current_knight.kill()
for castle in self.list_castles:
if castle.position == position_left:
castle.health_bar.take_dmg(current_knight.attack)
def attack_knight_right(self, knights_list, current_knight):
position_right = current_knight.position[0] + 1, current_knight.position[1]
for some_knight in knights_list:
if (some_knight.position == position_right and some_knight.team != current_knight.team):
some_knight.health_bar.take_dmg(current_knight.attack)
if some_knight.health_bar.current_hp == 0:
some_knight.kill()
self.add_points(current_knight.team, 5)
for monster in self.list_monsters:
if monster.position == position_right:
monster.health_bar.take_dmg(current_knight.attack)
if monster.health_bar.current_hp <= 0:
monster.kill()
self.add_points(current_knight.team, monster.points)
else:
current_knight.health_bar.take_dmg(monster.attack)
if current_knight.health_bar.current_hp <= 0:
current_knight.kill()
for castle in self.list_castles:
if castle.position == position_right:
castle.health_bar.take_dmg(current_knight.attack)
def attack_knight_up(self, knights_list, current_knight):
position_up = current_knight.position[0], current_knight.position[1] - 1
for some_knight in knights_list:
if (some_knight.position == position_up and some_knight.team != current_knight.team):
some_knight.health_bar.take_dmg(current_knight.attack)
if some_knight.health_bar.current_hp == 0:
some_knight.kill()
self.add_points(current_knight.team, 5)
for monster in self.list_monsters:
if monster.position == position_up:
monster.health_bar.take_dmg(current_knight.attack)
if monster.health_bar.current_hp <= 0:
monster.kill()
self.add_points(current_knight.team, monster.points)
else:
current_knight.health_bar.take_dmg(monster.attack)
if current_knight.health_bar.current_hp <= 0:
current_knight.kill()
for castle in self.list_castles:
if castle.position == position_up:
castle.health_bar.take_dmg(current_knight.attack)
def attack_knight_down(self, knights_list, current_knight):
position_down = current_knight.position[0], current_knight.position[1] + 1
for some_knight in knights_list:
if (some_knight.position == position_down and some_knight.team != current_knight.team):
some_knight.health_bar.take_dmg(current_knight.attack)
if some_knight.health_bar.current_hp == 0:
some_knight.kill()
self.add_points(current_knight.team, 5)
for monster in self.list_monsters:
if monster.position == position_down:
monster.health_bar.take_dmg(current_knight.attack)
if monster.health_bar.current_hp <= 0:
monster.kill()
self.add_points(current_knight.team, monster.points)
else:
current_knight.health_bar.take_dmg(monster.attack)
if current_knight.health_bar.current_hp <= 0:
current_knight.kill()
for castle in self.list_castles:
if castle.position == position_down:
castle.health_bar.take_dmg(current_knight.attack)
def handle_turn(self): def handle_turn(self):
print("next turn")
current_knight = self.knights_queue.dequeue_knight() current_knight = self.knights_queue.dequeue_knight()
knights_list = self.list_knights_red + self.list_knights_blue
print("next turn " + current_knight.team)
knight_pos_x = current_knight.position[0] knight_pos_x = current_knight.position[0]
knight_pos_y = current_knight.position[1] knight_pos_y = current_knight.position[1]
positions = []
goal_list = self.decision_tree.predict_move(grid=self.map, current_knight=current_knight, goal_list = self.decision_tree.predict_move(grid=self.map, current_knight=current_knight,
monsters=self.list_monsters, monsters=self.list_monsters,
opponents=self.list_knights_red opponents=self.list_knights_blue
if current_knight.team_alias == 'k_r' else self.list_knights_blue, if current_knight.team_alias() == 'k_r' else self.list_knights_red,
castle=self.list_castles[0]) castle=self.list_castles[0])
if (len(self.list_knights_blue) == 0 or len(self.list_knights_red) == 0):
pygame.quit()
if len(goal_list) == 0: if len(goal_list) == 0:
return return
@ -134,6 +236,19 @@ class Level:
return return
next_action = action_list.pop(0) next_action = action_list.pop(0)
#if current_knight.health_bar.current_hp != 0:
#self.attack_knight(knights_list, positions, current_knight)
if current_knight.direction.name == UP:
self.attack_knight_up(knights_list, current_knight)
elif current_knight.direction.name == DOWN:
self.attack_knight_down(knights_list, current_knight)
elif current_knight.direction.name == RIGHT:
self.attack_knight_right(knights_list, current_knight)
elif current_knight.direction.name == LEFT:
self.attack_knight_left(knights_list, current_knight)
if next_action == TURN_LEFT: if next_action == TURN_LEFT:
self.logs.enqueue_log(f'AI {current_knight.team}: Obrót w lewo.') self.logs.enqueue_log(f'AI {current_knight.team}: Obrót w lewo.')
current_knight.rotate_left() current_knight.rotate_left()
@ -142,9 +257,9 @@ class Level:
current_knight.rotate_right() current_knight.rotate_right()
elif next_action == FORWARD: elif next_action == FORWARD:
current_knight.step_forward() current_knight.step_forward()
self.map[knight_pos_y][knight_pos_x] = 'g' self.map[knight_pos_y][knight_pos_x] = MAP_ALIASES.get("GRASS")
# update knight on map # update knight on map
if current_knight.direction.name == UP: if current_knight.direction.name == UP:
self.logs.enqueue_log(f'AI {current_knight.team}: Ruch do góry.') self.logs.enqueue_log(f'AI {current_knight.team}: Ruch do góry.')
self.map[knight_pos_y - 1][knight_pos_x] = current_knight.team_alias() self.map[knight_pos_y - 1][knight_pos_x] = current_knight.team_alias()
@ -166,3 +281,6 @@ class Level:
# update and draw the game # update and draw the game
self.sprites.draw(self.screen) self.sprites.draw(self.screen)
self.sprites.update() self.sprites.update()

View File

@ -16,8 +16,7 @@ class Castle(pygame.sprite.Sprite):
position_in_px = (parse_cord(position[0]), parse_cord(position[1])) position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
self.rect = self.image.get_rect(center=position_in_px) self.rect = self.image.get_rect(center=position_in_px)
self.max_hp = 80 self.max_hp = 80
self.current_hp = random.randint(1, self.max_hp) self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
self.health_bar = HealthBar(screen, self.rect, current_hp=self.current_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
def update(self): def update(self):
self.health_bar.update() self.health_bar.update()

View File

@ -7,8 +7,11 @@ from common.helpers import parse_cord
from logic.health_bar import HealthBar from logic.health_bar import HealthBar
def load_knight_textures(): def load_knight_textures(team):
random_index = random.randint(1, 4) if team == "blue":
random_index = 3
else:
random_index = 4
states = [ states = [
pygame.image.load(f'resources/textures/knight_{random_index}_up.png').convert_alpha(), # up = 0 pygame.image.load(f'resources/textures/knight_{random_index}_up.png').convert_alpha(), # up = 0
pygame.image.load(f'resources/textures/knight_{random_index}_right.png').convert_alpha(), # right = 1 pygame.image.load(f'resources/textures/knight_{random_index}_right.png').convert_alpha(), # right = 1
@ -24,7 +27,7 @@ class Knight(pygame.sprite.Sprite):
super().__init__(group) super().__init__(group)
self.direction = Direction.DOWN self.direction = Direction.DOWN
self.states = load_knight_textures() self.states = load_knight_textures(team)
self.image = self.states[self.direction.value] self.image = self.states[self.direction.value]
self.position = position self.position = position
@ -33,11 +36,11 @@ class Knight(pygame.sprite.Sprite):
self.rect = self.image.get_rect(topleft=position_in_px) self.rect = self.image.get_rect(topleft=position_in_px)
self.team = team self.team = team
self.max_hp = random.randint(7, 12) self.max_hp = random.randint(9, 13)
self.attack = random.randint(4, 7) self.attack = random.randint(2, 4)
self.defense = random.randint(1, 4) self.defense = random.randint(1, 4)
self.points = 1 self.points = 1
self.health_bar = HealthBar(screen, self.rect, current_hp=random.randint(1, self.max_hp), max_hp=self.max_hp, calculate_xy=True, calculate_size=True) self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
def rotate_left(self): def rotate_left(self):
self.direction = self.direction.left() self.direction = self.direction.left()

View File

@ -22,14 +22,13 @@ class Monster(pygame.sprite.Sprite):
position_in_px = (parse_cord(position[0]), parse_cord(position[1])) position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
self.rect = self.image.get_rect(topleft=position_in_px) self.rect = self.image.get_rect(topleft=position_in_px)
self.position = position self.position = position
self.max_hp = random.randrange(15, 25) self.max_hp = random.randrange(15, 20)
self.current_hp = random.randint(1, self.max_hp) self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp,
self.health_bar = HealthBar(screen, self.rect, current_hp=self.current_hp, max_hp=self.max_hp,
calculate_xy=True, calculate_size=True) calculate_xy=True, calculate_size=True)
self.attack = random.randrange(2, 10) self.attack = random.randrange(4, 6)
if self.image == monster_images[0]: if self.image == monster_images[0]:
self.max_hp = 20 self.max_hp = 20
self.attack = 9 self.attack = 6
self.points = 10 self.points = 10
elif self.image == monster_images[1]: elif self.image == monster_images[1]:
self.max_hp = 15 self.max_hp = 15

Binary file not shown.

View File

@ -0,0 +1 @@
{"map": [[0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 3, 3, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3], [0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3], [0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 3], [0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2], [0, 0, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 0, 2, 2, 2, 0, 0, 0, 0, 0, 7, 2, 0], [0, 0, 0, 6, 0, 0, 0, 2, 2, 2, 0, 5, 5, 0, 2, 0, 0, 2, 2, 2, 2, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 5, 5, 0, 2, 0, 0, 0, 0, 2, 2, 1, 1, 7], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 1, 7], [6, 0, 0, 6, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 1, 1, 0], [6, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 1, 1, 7, 0], [0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 3, 1, 1, 1, 0], [0, 3, 3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 1, 0, 0], [0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}

View File

@ -0,0 +1 @@
{"map": [[0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0], [0, 3, 3, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 3, 3, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 2, 2, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 6, 3, 3, 0, 0, 0, 0, 0, 3, 0, 4, 0, 3, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 7, 7, 0, 0], [6, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 3, 7, 0, 0, 0], [0, 0, 6, 6, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0], [0, 2, 2, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0], [2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}

View File

@ -0,0 +1 @@
{"map": [[0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 3], [0, 0, 0, 0, 2, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 0], [0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 2, 0], [0, 0, 3, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0], [0, 0, 3, 0, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0], [0, 0, 3, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 6, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0], [0, 6, 0, 0, 0, 0, 3, 0, 0, 0, 0, 5, 5, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 5, 5, 1, 2, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 4], [6, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 7, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 3, 2, 0, 0, 0, 0, 0, 0], [0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0], [0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}

View File

@ -1,6 +1,31 @@
from ui.screens.screen import Screen import pygame
from ui.screens.screen import Screen
from common.colors import BLACK
from common.helpers import draw_text
class Credits(Screen): class Credits(Screen):
def __init__(self, screen, clock): def __init__(self, screen, clock):
super().__init__('credits', screen, clock) super().__init__('credits', screen, clock)
def display_screen(self):
running = True
while running:
self.screen.fill((252, 164, 12))
draw_text('Twórcy :', BLACK, self.screen, 520, 150)
draw_text('Angelika Iskra', BLACK, self.screen, 520, 250)
draw_text('Dawid Korzępa', BLACK, self.screen, 520, 300)
draw_text('Juliusz Sadowski', BLACK, self.screen, 520, 350)
draw_text('Aleksandra Muczyńska', BLACK, self.screen, 520, 400)
draw_text('Jerzy Tomaszewski', BLACK, self.screen, 520, 450)
draw_text('Mateusz Konofał', BLACK, self.screen, 520, 500)
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:
running = False
pygame.display.update()
self.clock.tick(60)

View File

@ -23,6 +23,8 @@ class Stats:
pygame.Rect(self.x + 210, self.y + 210, 100, 15), pygame.Rect(self.x + 210, self.y + 210, 100, 15),
current_hp=sum([knight.get_current_hp() for knight in self.list_knights_red]), current_hp=sum([knight.get_current_hp() for knight in self.list_knights_red]),
max_hp=sum([knight.get_max_hp() for knight in self.list_knights_red])) max_hp=sum([knight.get_max_hp() for knight in self.list_knights_red]))
self.blue_team_points = 0
self.red_team_points = 0
def update(self): def update(self):
@ -50,12 +52,16 @@ class Stats:
# texts # texts
draw_text('Rycerze: ' + str(len(self.list_knights_blue)), FONT_DARK, self.screen, self.x + 35, self.y + 240, 18) # blue draw_text('Rycerze: ' + str(len(self.list_knights_blue)), FONT_DARK, self.screen, self.x + 35, self.y + 240, 18) # blue
draw_text('Fortece: ' + str(len(self.list_knights_red)), FONT_DARK, self.screen, self.x + 35, self.y + 270, 18) # red
draw_text('Rycerze: 4', FONT_DARK, self.screen, self.x + 215, self.y + 240, 18) draw_text('Rycerze: ' + str(len(self.list_knights_red)), FONT_DARK, self.screen, self.x + 215, self.y + 240, 18)
draw_text('Fortece: 0', FONT_DARK, self.screen, self.x + 215, self.y + 270, 18)
# points # points
pygame.draw.rect(self.screen, ORANGE, pygame.Rect(self.x, self.y + 390, 340, 3)) pygame.draw.rect(self.screen, ORANGE, pygame.Rect(self.x, self.y + 390, 340, 3))
draw_text('PUNKTY: 10', FONT_DARK, self.screen, self.x + 35, self.y + 408, 18, True) draw_text('PUNKTY: ' + str(self.blue_team_points), FONT_DARK, self.screen, self.x + 35, self.y + 408, 18, True)
draw_text('PUNKTY: 10', FONT_DARK, self.screen, self.x + 215, self.y + 408, 18, True) draw_text('PUNKTY: ' + str(self.red_team_points), FONT_DARK, self.screen, self.x + 215, self.y + 408, 18, True)
def add_points(self, team, points):
if team == "blue":
self.blue_team_points += points
else:
self.red_team_points += points