Compare commits

..

2 Commits

Author SHA1 Message Date
Angelika Iskra
6aee7bb207 work on what_is_it func; 2022-05-27 00:15:32 +02:00
Angelika Iskra
36f20d8895 work on what_is_it func; 2022-05-26 23:34:46 +02:00
42 changed files with 136 additions and 1787 deletions

View File

@ -4,11 +4,10 @@ import heapq
from dataclasses import dataclass, field
from typing import Tuple, Optional, List
from algorithms.genetic.const import MAP_ALIASES
from common.constants import ROWS, COLUMNS, LEFT, RIGHT, UP, DOWN
from common.helpers import directions
EMPTY_FIELDS = [MAP_ALIASES.get("SAND"), MAP_ALIASES.get("GRASS"), ' ']
EMPTY_FIELDS = ['s', 'g', ' ']
TURN_LEFT = 'TURN_LEFT'
TURN_RIGHT = 'TURN_RIGHT'

View File

@ -1,142 +0,0 @@
from dataclasses import dataclass
import numpy as np
from const import *
from typing import List, Dict, Tuple
import numpy.typing as npt
@dataclass
class Position:
row: int
col: int
@dataclass
class Area:
position: Position
width: int
height: int
AREAS_TO_CROSS = [
# up above left knights spawn
Area(position=Position(row=0, col=0),
width=KNIGHTS_SPAWN_WIDTH,
height=LEFT_KNIGHTS_SPAWN_FIRST_ROW),
# down below left knights spawn
Area(position=Position(row=LEFT_KNIGHTS_SPAWN_FIRST_ROW + KNIGHTS_SPAWN_HEIGHT, col=0),
width=KNIGHTS_SPAWN_WIDTH,
height=ROWS - LEFT_KNIGHTS_SPAWN_FIRST_ROW - KNIGHTS_SPAWN_HEIGHT),
# between left knights spawn and castle
Area(position=Position(row=0, col=KNIGHTS_SPAWN_WIDTH),
width=CASTLE_SPAWN_FIRST_COL - KNIGHTS_SPAWN_WIDTH,
height=ROWS),
# up above castle
Area(position=Position(row=0, col=CASTLE_SPAWN_FIRST_COL),
width=2,
height=CASTLE_SPAWN_FIRST_ROW),
# down below castle
Area(position=Position(row=CASTLE_SPAWN_FIRST_ROW + 2, col=CASTLE_SPAWN_FIRST_COL),
width=2,
height=ROWS - CASTLE_SPAWN_FIRST_ROW - 2),
# between castle and right knights spawn
Area(position=Position(row=0, col=CASTLE_SPAWN_FIRST_COL + 2),
width=RIGHT_KNIGHTS_SPAWN_FIRST_COL - CASTLE_SPAWN_FIRST_COL - 2,
height=ROWS),
# up above right knights spawn
Area(position=Position(row=0, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
width=KNIGHTS_SPAWN_WIDTH,
height=RIGHT_KNIGHTS_SPAWN_FIRST_ROW),
# down below right knights spawn
Area(position=Position(row=RIGHT_KNIGHTS_SPAWN_FIRST_ROW + KNIGHTS_SPAWN_HEIGHT, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
width=KNIGHTS_SPAWN_WIDTH,
height=ROWS - RIGHT_KNIGHTS_SPAWN_FIRST_ROW - KNIGHTS_SPAWN_HEIGHT),
]
def dfs(grid: npt.NDArray, visited: Dict[Tuple[int, int], bool], position: Position, rows: int, cols: int) -> None:
visited[(position.row, position.col)] = True
row_vector = [0, 0, 1, -1]
col_vector = [-1, 1, 0, 0]
neighbours = []
for i in range(4):
rr = position.row + row_vector[i]
cc = position.col + col_vector[i]
if rr < 0 or rr >= ROWS:
continue
elif cc < 0 or cc >= COLUMNS:
continue
else:
p = Position(rr, cc)
if (p.row, p.col) in visited:
neighbours.append(p)
for neighbour in neighbours:
if not visited[(neighbour.row, neighbour.col)]:
dfs(grid, visited, neighbour, rows, cols)
def get_islands(grid: npt.NDArray, positions: List[Position], rows: int = ROWS, cols: int = COLUMNS) -> List[Position]:
"""it returns list of all islands roots"""
visited = {}
for position in positions:
visited[(position.row, position.col)] = False
islands = 0
roots = []
for position in positions:
if not visited[(position.row, position.col)]:
dfs(grid, visited, position, rows, cols)
roots.append(position)
islands += 1
return roots
def find_neighbours(grid: npt.NDArray, col: int, row: int) -> List[Position]:
dr = [-1, 1, 0, 0]
dc = [0, 0, -1, 1]
neighbours = []
for i in range(4):
rr = row + dr[i]
cc = col + dc[i]
if 0 <= rr < ROWS and 0 <= cc < COLUMNS and grid[rr][cc] == MAP_ALIASES.get('GRASS'):
neighbours.append(Position(row=rr, col=cc))
return neighbours
def get_tiles_positions(grid: npt.NDArray):
sands = []
trees = []
waters = []
monsters = []
for row_num in range(len(grid)):
for col_num in range(len(grid[row_num])):
if grid[row_num][col_num] == MAP_ALIASES.get('WATER'):
waters.append(Position(row=row_num, col=col_num))
elif grid[row_num][col_num] == MAP_ALIASES.get('TREE'):
trees.append(Position(row=row_num, col=col_num))
elif grid[row_num][col_num] == MAP_ALIASES.get('SAND'):
sands.append(Position(row=row_num, col=col_num))
elif grid[row_num][col_num] == MAP_ALIASES.get('MONSTER'):
monsters.append(Position(row=row_num, col=col_num))
return sands, trees, waters, monsters

View File

@ -1,29 +0,0 @@
# map config
KNIGHTS_PER_TEAM_COUNT = 4
SAND_COUNT = 21
WATER_COUNT = 21
TREE_COUNT = 37
MONSTERS_COUNT = 2
CASTLES_COUNT = 1
ROWS = 19
COLUMNS = 24
KNIGHTS_SPAWN_WIDTH = 4
KNIGHTS_SPAWN_HEIGHT = 7
LEFT_KNIGHTS_SPAWN_FIRST_ROW = 6
LEFT_KNIGHTS_SPAWN_FIRST_COL = 0
RIGHT_KNIGHTS_SPAWN_FIRST_ROW = 6
RIGHT_KNIGHTS_SPAWN_FIRST_COL = 20
CASTLE_SPAWN_FIRST_ROW = 7
CASTLE_SPAWN_FIRST_COL = 11
# map aliases
MAP_ALIASES = {
"GRASS": 0,
"SAND": 1,
"WATER": 2,
"TREE": 3,
"MONSTER": 4,
"CASTLE": 5,
"KNIGHT_RED": 6,
"KNIGHT_BLUE": 7,
}

View File

@ -1,166 +0,0 @@
import math
import random
from copy import deepcopy
from random import randrange
from typing import List
import numpy as np
import numpy.typing as npt
from common import Position, get_islands, AREAS_TO_CROSS, find_neighbours, get_tiles_positions
from const import *
class Genome:
grid: npt.NDArray
knights_red: List[Position]
knights_blue: List[Position]
waters: List[Position]
trees: List[Position]
sands: List[Position]
monsters: List[Position]
fitness: int
sand_islands: List[Position]
tree_islands: List[Position]
water_islands: List[Position]
def __init__(self):
self.grid = np.zeros((ROWS, COLUMNS), dtype=int)
self.fitness = 0
self.knights_red = spawn_objects_in_given_area(
grid=self.grid,
object_alias=MAP_ALIASES.get("KNIGHT_RED"),
objects_count=KNIGHTS_PER_TEAM_COUNT,
spawn_position_start=Position(row=LEFT_KNIGHTS_SPAWN_FIRST_ROW, col=LEFT_KNIGHTS_SPAWN_FIRST_COL),
width=KNIGHTS_SPAWN_WIDTH,
height=KNIGHTS_SPAWN_HEIGHT
)
self.knights_blue = spawn_objects_in_given_area(
grid=self.grid,
object_alias=MAP_ALIASES.get("KNIGHT_BLUE"),
objects_count=KNIGHTS_PER_TEAM_COUNT,
spawn_position_start=Position(row=RIGHT_KNIGHTS_SPAWN_FIRST_ROW, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
width=KNIGHTS_SPAWN_WIDTH,
height=KNIGHTS_SPAWN_HEIGHT
)
spawn_objects_in_given_area(
grid=self.grid,
object_alias=MAP_ALIASES.get("CASTLE"),
objects_count=4,
spawn_position_start=Position(row=CASTLE_SPAWN_FIRST_ROW, col=CASTLE_SPAWN_FIRST_COL),
width=2,
height=2
)
self.waters = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("WATER"),
objects_count=WATER_COUNT)
self.trees = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("TREE"),
objects_count=TREE_COUNT)
self.sands = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("SAND"),
objects_count=SAND_COUNT)
self.monsters = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("MONSTER"),
objects_count=MONSTERS_COUNT)
self.sand_islands = get_islands(self.grid, self.sands)
self.tree_islands = get_islands(self.grid, self.trees)
self.water_islands = get_islands(self.grid, self.waters)
def update_map(self):
self.sands, self.trees, self.waters, self.monsters = get_tiles_positions(self.grid)
self.sand_islands = get_islands(self.grid, self.sands)
self.tree_islands = get_islands(self.grid, self.trees)
self.water_islands = get_islands(self.grid, self.waters)
def calc_fitness(self):
score = SAND_COUNT + TREE_COUNT + WATER_COUNT
score = score - len(self.sand_islands) - len(self.tree_islands) - len(self.water_islands)
sands, trees, waters, monsters = get_tiles_positions(self.grid)
if len(monsters) != MONSTERS_COUNT:
self.fitness = 0
return
if len(sands) < SAND_COUNT or len(trees) < TREE_COUNT or len(waters) < WATER_COUNT:
self.fitness = 5
return
self.fitness = score
def crossover(self, partner):
# replace a randomly selected part of the grid with partner's part
child = Genome()
child.grid = deepcopy(self.grid)
area_to_cross = random.choice(AREAS_TO_CROSS)
for row in range(area_to_cross.position.row, area_to_cross.position.row + area_to_cross.height):
for col in range(area_to_cross.position.col, area_to_cross.position.col + area_to_cross.width):
child.grid[row][col] = partner.grid[row][col]
child.update_map()
return child
def mutate(self, mutation_rate: float):
# remove 1 item from a random island and add a neighbor to another island
if random.random() < mutation_rate:
# select islands of the same, random type
islands_of_same_type = random.choice([self.sand_islands, self.tree_islands, self.water_islands])
random_index = random.randint(0, len(islands_of_same_type) - 1)
island = islands_of_same_type[random_index]
next_island = islands_of_same_type[(random_index + 1) % len(islands_of_same_type)]
free_tiles_nearby = find_neighbours(self.grid, next_island.col, next_island.row)
tile_type = self.grid[island.row][island.col]
self.grid[island.row][island.col] = MAP_ALIASES.get('GRASS')
# todo: if there are no free tiles around then randomize another next_island
if len(free_tiles_nearby) > 0:
random_free_tile = random.choice(free_tiles_nearby)
island.row = random_free_tile.row
island.col = random_free_tile.col
self.grid[island.row][island.col] = tile_type
self.update_map()
def is_empty(grid: npt.NDArray, position: Position) -> bool:
return grid[position.row, position.col] in [MAP_ALIASES.get("GRASS"), MAP_ALIASES.get("SAND")]
def is_invalid_area(spawn_position_start, height, width) -> bool:
return spawn_position_start.row + height - 1 < 0 or \
spawn_position_start.row + height - 1 >= ROWS or \
spawn_position_start.col + width - 1 < 0 or \
spawn_position_start.col + width - 1 >= COLUMNS
def spawn_objects_in_given_area(grid: npt.NDArray,
object_alias: str,
objects_count: int = 1,
spawn_position_start: Position = Position(row=0, col=0),
width: int = COLUMNS,
height: int = ROWS) -> List[Position]:
if is_invalid_area(spawn_position_start, height, width):
raise ValueError("Invalid spawn area")
objects_remaining = int(objects_count)
positions = []
while objects_remaining > 0:
row = randrange(spawn_position_start.row, spawn_position_start.row + height)
col = randrange(spawn_position_start.col, spawn_position_start.col + width)
position = Position(row=row, col=col)
if is_empty(grid=grid, position=position):
grid[position.row, position.col] = object_alias
positions.append(position)
objects_remaining -= 1
return positions

View File

@ -1,26 +0,0 @@
from algorithms.genetic.genome import Genome
from algorithms.genetic.map_importer_exporter import export_map
from population import Population
def main() -> None:
population_size = 500
mutation_rate = 0.3
population = Population(mutation_rate, population_size, 55)
while not population.evaluate():
# create next generation
population.generate()
# calc fitness
population.calc_fitness()
print(population.best_genome.grid)
print("Fitness of the best: ", population.best_genome.fitness)
export_map(population.best_genome.grid)
if __name__ == '__main__':
main()

View File

@ -1,42 +0,0 @@
import json
import random
import string
from datetime import datetime
from pathlib import Path
import numpy
import numpy.typing as npt
from os import listdir
from os.path import isfile, join
# Save map to file
def export_map(grid: npt.NDArray):
json_data = {"map": grid.tolist()}
now = datetime.now()
file_name = "map_" + now.strftime("%Y_%m_%d_%H_%M_%S") + ".json"
path = Path("../../resources/maps/")
file_to_open = path / file_name
with open(file_to_open, "w+") as write_file:
json.dump(json_data, write_file)
print("Saved map to file " + file_name)
def import_random_map() -> object:
path = "resources/maps"
files = [f for f in listdir(path) if isfile(join(path, f))]
random_map_name = random.choice(files)
return import_map(random_map_name)
# Read map from file
def import_map(file_name: string) -> object:
file_to_open = "resources/maps/" + file_name
with open(file_to_open, "r") as read_file:
print("Reading map from file " + file_name)
decoded_json = json.load(read_file)
decoded_grid = numpy.asarray(decoded_json["map"])
print(decoded_grid)
return decoded_grid.tolist()

View File

@ -1,81 +0,0 @@
import random
from typing import List
import numpy as np
import numpy.typing as npt
from genome import Genome
class Population:
population: List[Genome] = [] # array to hold the current population
mating_pool: List[Genome] = [] # array which we will use for our "mating pool"
generations: int = 0 # number of generations
finished: bool = False # are we finished evolving?
mutation_rate: float
perfect_score: int
best_genome: Genome
def __init__(self, mutation_rate, population_size, perfect_score=20):
self.mutation_rate = mutation_rate
self.perfect_score = perfect_score
for i in range(0, population_size):
new_genome = Genome()
new_genome.calc_fitness()
self.population.append(new_genome)
# create a new generation
def generate(self):
max_fitness = 0
for genome in self.population:
if genome.fitness > max_fitness:
max_fitness = genome.fitness
print("Max fitness of generation " + str(self.generations) + " = " + str(max_fitness))
# refill the population with children from the mating pool
new_population = []
for genome in self.population:
partner_a = self.accept_reject(max_fitness)
partner_b = self.accept_reject(max_fitness)
child = partner_a.crossover(partner_b)
child.mutate(self.mutation_rate)
new_population.append(child)
self.population = new_population
self.generations += 1
# select random with correct probability from population
def accept_reject(self, max_fitness: int):
safe_flag = 0
while safe_flag < 10000:
partner = random.choice(self.population)
r = random.randint(0, max_fitness)
if r < partner.fitness:
return partner
safe_flag += 1
# compute the current "most fit" member of the population
def evaluate(self):
record = 0
best_index = 0
for index in range(len(self.population)):
genome = self.population[index]
if genome.fitness > record:
record = genome.fitness
best_index = index
self.best_genome = self.population[best_index]
if record >= self.perfect_score:
self.finished = True
return self.finished
def calc_fitness(self):
for genome in self.population:
genome.calc_fitness()

View File

@ -0,0 +1 @@
{}

View File

@ -0,0 +1 @@
{}

View File

@ -0,0 +1 @@
{}

View File

@ -1,11 +1,9 @@
import torch
import pytorch_lightning as pl
import torch.nn as nn
from torch.optim import SGD, Adam, lr_scheduler
from torch.optim import Adam
import torch.nn.functional as F
from torch.utils.data import DataLoader
from watersandtreegrass import WaterSandTreeGrass
from common.constants import DEVICE, BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE, SETUP_PHOTOS, ID_TO_CLASS
from common.constants import BATCH_SIZE, LEARNING_RATE
class NeuralNetwork(pl.LightningModule):
@ -16,11 +14,9 @@ class NeuralNetwork(pl.LightningModule):
self.maxpool1 = nn.MaxPool2d((2, 2), stride=2)
self.conv2 = nn.Conv2d(24, 48, (3, 3), padding=1)
self.relu2 = nn.ReLU()
self.fc1 = nn.Linear(48*18*18, 800)
self.fc1 = nn.Linear(48*18*18, 4)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(800, 400)
self.relu4 = nn.ReLU()
self.fc3 = nn.Linear(400, 4)
self.fc2 = nn.Linear(500, num_classes)
self.logSoftmax = nn.LogSoftmax(dim=1)
self.batch_size = batch_size
@ -34,10 +30,6 @@ class NeuralNetwork(pl.LightningModule):
x = self.relu2(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
x = self.relu3(x)
x = self.fc2(x)
x = self.relu4(x)
x = self.fc3(x)
x = self.logSoftmax(x)
return x

View File

@ -1,17 +1,53 @@
import torch
import common.helpers
from algorithms.neural_network.neural_network import NeuralNetwork
from algorithms.neural_network.watersandtreegrass import WaterSandTreeGrass
from common.constants import DEVICE, BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE, SETUP_PHOTOS, ID_TO_CLASS
from watersandtreegrass import WaterSandTreeGrass
from torch.utils.data import DataLoader
from neural_network import NeuralNetwork
from torchvision.io import read_image, ImageReadMode
import torch.nn as nn
from torch.optim import Adam
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
import torchvision.transforms.functional as F
from PIL import Image
def train(model):
model = model.to(DEVICE)
model.train()
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)
criterion = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=LEARNING_RATE)
for epoch in range(NUM_EPOCHS):
for batch_idx, (data, targets) in enumerate(train_loader):
data = data.to(device=DEVICE)
targets = targets.to(device=DEVICE)
scores = model(data)
loss = criterion(scores, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % 4 == 0:
print("epoch: %d loss: %.4f" % (epoch, loss.item()))
print("FINISHED TRAINING!")
torch.save(model.state_dict(), "./learnednetwork.pth")
print("Checking accuracy for the train set.")
check_accuracy(train_loader)
print("Checking accuracy for the test set.")
check_accuracy(test_loader)
print("Checking accuracy for the tiles.")
check_accuracy_tiles()
def check_accuracy_tiles():
@ -59,13 +95,12 @@ def check_accuracy_tiles():
def what_is_it(img_path, show_img=False):
image = Image.open(img_path).convert('RGB')
image = read_image(img_path, mode=ImageReadMode.RGB)
if show_img:
plt.imshow(image)
plt.imshow(plt.imread(img_path))
plt.show()
image = SETUP_PHOTOS(image).unsqueeze(0)
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_20/checkpoints/epoch=3-step=324.ckpt')
model = NeuralNetwork.load_from_checkpoint('D:/DEV/UAM/WMICraft/algorithms/neural_network/lightning_logs/version_3/checkpoints/epoch=8-step=810.ckpt')
with torch.no_grad():
model.eval()
@ -73,53 +108,18 @@ def what_is_it(img_path, show_img=False):
return ID_TO_CLASS[idx]
def check_accuracy(tset):
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_23/checkpoints/epoch=3-step=324.ckpt')
num_correct = 0
num_samples = 0
model = model.to(DEVICE)
model.eval()
# CNN = NeuralNetwork()
# common.helpers.createCSV()
with torch.no_grad():
for photo, label in tset:
photo = photo.to(DEVICE)
label = label.to(DEVICE)
scores = model(photo)
predictions = scores.argmax(dim=1)
num_correct += (predictions == label).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}%')
def check_accuracy_data():
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
print("Accuracy of train_set:")
check_accuracy(train_loader)
print("Accuracy of test_set:")
check_accuracy(test_loader)
#CNN = NeuralNetwork()
#common.helpers.createCSV()
#trainer = pl.Trainer(accelerator='gpu', callbacks=EarlyStopping('val_loss'), devices=1, max_epochs=NUM_EPOCHS)
#trainer = pl.Trainer(accelerator='gpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
#trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
#testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
#train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
#test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
#trainer.fit(CNN, train_loader, test_loader)
#trainer = pl.Trainer(accelerator='gpu', devices=1, callbacks=[EarlyStopping('val_loss')], max_epochs=NUM_EPOCHS)
# trainer = pl.Trainer(accelerator='cpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
#
# trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
# testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
# train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
# test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
#
# trainer.fit(CNN, train_loader, test_loader)
#trainer.tune(CNN, train_loader, test_loader)
#print(what_is_it('../../resources/textures/grass2.png', True))
#check_accuracy_data()
#check_accuracy_tiles()
#print(what_is_it('../../resources/textures/sand.png', True))

View File

@ -3,7 +3,6 @@ from torch.utils.data import Dataset
import pandas as pd
from torchvision.io import read_image, ImageReadMode
from common.helpers import createCSV
from PIL import Image
class WaterSandTreeGrass(Dataset):
@ -16,8 +15,7 @@ class WaterSandTreeGrass(Dataset):
return len(self.img_labels)
def __getitem__(self, idx):
image = Image.open(self.img_labels.iloc[idx, 0]).convert('RGB')
image = read_image(self.img_labels.iloc[idx, 0], mode=ImageReadMode.RGB)
label = torch.tensor(int(self.img_labels.iloc[idx, 1]))
if self.transform:

View File

@ -6,7 +6,7 @@ GAME_TITLE = 'WMICraft'
WINDOW_HEIGHT = 800
WINDOW_WIDTH = 1360
FPS_COUNT = 60
TURN_INTERVAL = 200
TURN_INTERVAL = 500
GRID_CELL_PADDING = 5
GRID_CELL_SIZE = 36
@ -77,15 +77,16 @@ BAR_HEIGHT_MULTIPLIER = 0.1
#NEURAL_NETWORK
LEARNING_RATE = 0.000630957344480193
LEARNING_RATE = 0.00478630092322638
BATCH_SIZE = 64
NUM_EPOCHS = 9
NUM_EPOCHS = 20
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print("Using ", DEVICE)
CLASSES = ['grass', 'sand', 'tree', 'water']
SETUP_PHOTOS = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
transforms.Resize((36, 36)),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

View File

@ -1,8 +1,6 @@
from typing import Tuple, List
import pygame
from algorithms.genetic.const import MAP_ALIASES
from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE, COLUMNS, ROWS, CLASSES, CLASS_TO_ID
import csv
import os
@ -101,7 +99,7 @@ def castle_neighbors(map, castle_bottom_right_row, castle_bottom_right_col):
return neighbors
def find_neighbours(grid: List[List[int]], col: int, row: int) -> List[Tuple[int, int]]:
def find_neighbours(grid: List[List[str]], col: int, row: int) -> List[Tuple[int, int]]:
dr = [-1, 1, 0, 0]
dc = [0, 0, -1, 1]
@ -113,7 +111,7 @@ def find_neighbours(grid: List[List[int]], col: int, row: int) -> List[Tuple[int
if rr < 0 or cc < 0: continue
if rr >= ROWS or cc >= COLUMNS: continue
if grid[rr][cc] not in [MAP_ALIASES.get("GRASS"), MAP_ALIASES.get("SAND"), '.']: continue
if grid[rr][cc] not in ['g', 's', '.']: continue
neighbours.append((rr, cc))
return neighbours

File diff suppressed because it is too large Load Diff

View File

@ -26,7 +26,7 @@ def parse_idx_of_opp_or_monster(s: str) -> int:
class DecisionTree:
def __init__(self) -> None:
data_frame = pd.read_csv('learning/dataset_tree_1000.csv', delimiter=';')
data_frame = pd.read_csv('learning/dataset_tree.csv', delimiter=';')
unlabeled_goals = data_frame['goal']
self.goals_label_encoder = LabelEncoder()
self.goals = self.goals_label_encoder.fit_transform(unlabeled_goals)
@ -34,7 +34,7 @@ class DecisionTree:
self.model = DecisionTreeClassifier(criterion='entropy')
self.model.fit(self.train_set.values, self.goals)
def predict_move(self, grid: List[List[int]], current_knight: Knight, castle: Castle, monsters: List[Monster],
def predict_move(self, grid: List[List[str]], current_knight: Knight, castle: Castle, monsters: List[Monster],
opponents: List[Knight]) -> \
List[Tuple[int, int]]:
distance_to_castle = manhattan_distance(current_knight.position, castle.position)
@ -42,15 +42,14 @@ class DecisionTree:
monsters_parsed = []
for monster in monsters:
monsters_parsed.append((manhattan_distance(current_knight.position, monster.position), parse_hp(
monster.health_bar.current_hp)))
monster.current_hp)))
opponents_parsed = []
for opponent in opponents:
opponents_parsed.append(
(manhattan_distance(current_knight.position, opponent.position),
parse_hp(opponent.health_bar.current_hp)))
(manhattan_distance(current_knight.position, opponent.position), parse_hp(opponent.health_bar.current_hp)))
prediction = self.get_prediction(tower_dist=distance_to_castle, tower_hp=castle.health_bar.current_hp,
prediction = self.get_prediction(tower_dist=distance_to_castle, tower_hp=castle.current_hp,
mob1_dist=monsters_parsed[0][0], mob1_hp=monsters_parsed[0][1],
mob2_dist=monsters_parsed[1][0], mob2_hp=monsters_parsed[1][1],
opp1_dist=opponents_parsed[0][0], opp1_hp=opponents_parsed[0][1],
@ -58,7 +57,7 @@ class DecisionTree:
opp3_dist=opponents_parsed[2][0], opp3_hp=opponents_parsed[2][1],
opp4_dist=opponents_parsed[3][0], opp4_hp=opponents_parsed[3][1],
agent_hp=current_knight.health_bar.current_hp)
print(f'Prediction = {prediction}')
print(prediction)
if prediction == 'tower': # castle...
return castle_neighbors(grid, castle_bottom_right_row=castle.position[0],
castle_bottom_right_col=castle.position[1])

View File

@ -45,7 +45,6 @@ class Game:
# create level
level.create_map()
stats = Stats(self.screen, level.list_knights_blue, level.list_knights_red)
level.setup_stats(stats)
print_numbers_flag = False
running = True
@ -62,8 +61,8 @@ class Game:
if event.key == pygame.K_n:
print_numbers_flag = not print_numbers_flag
if event.type == NEXT_TURN: # is called every 'TURN_INTERVAL' milliseconds
level.handle_turn()
# if event.type == NEXT_TURN: # is called every 'TURN_INTERVAL' milliseconds
# level.handle_turn()
stats.update()
logs.draw()

View File

@ -10,7 +10,7 @@ class KnightsQueue:
def dequeue_knight(self):
if self.both_teams_alive():
knight = self.queues[self.team_idx_turn].popleft()
if knight.health_bar.current_hp <= 0:
if knight.max_hp <= 0:
return self.dequeue_knight()
else:
self.queues[self.team_idx_turn].append(knight)

View File

@ -3,11 +3,11 @@ import random
import pygame
from algorithms.a_star import a_star, State, TURN_RIGHT, TURN_LEFT, FORWARD
from algorithms.genetic.const import MAP_ALIASES
from algorithms.genetic.map_importer_exporter import import_random_map
from algorithms.neural_network.neural_network_interface import what_is_it
from common.constants import *
from learning.decision_tree import DecisionTree
from logic.knights_queue import KnightsQueue
from logic.spawner import Spawner
from models.castle import Castle
from models.knight import Knight
from models.monster import Monster
@ -22,7 +22,7 @@ class Level:
# sprite group setup
self.sprites = pygame.sprite.LayeredUpdates()
self.map = []
self.map = [['g' for _ in range(COLUMNS)] for y in range(ROWS)]
self.list_knights_blue = []
self.list_knights_red = []
@ -31,20 +31,29 @@ class Level:
self.knights_queue = None
self.stats = None
def setup_stats(self, stats):
self.stats = stats
def add_points(self, team, points_to_add):
if self.stats is not None:
self.stats.add_points(team, points_to_add)
def create_map(self):
self.map = import_random_map()
self.setup_base_tiles()
self.setup_objects()
self.knights_queue = KnightsQueue(self.list_knights_blue, self.list_knights_red)
print("Create map")
print(what_is_it('D:/DEV/UAM/WMICraft/resources/textures/t2.jpg'))
# self.generate_map()
# self.setup_base_tiles()
# self.setup_objects()
# self.knights_queue = KnightsQueue(self.list_knights_blue, self.list_knights_red)
def generate_map(self):
spawner = Spawner(self.map)
spawner.spawn_where_possible(['w' for _ in range(NBR_OF_WATER)])
spawner.spawn_where_possible(['t' for _ in range(NBR_OF_TREES)])
spawner.spawn_where_possible(['s' for _ in range(NBR_OF_SANDS)])
spawner.spawn_in_area(['k_b' for _ in range(4)], LEFT_KNIGHTS_SPAWN_FIRST_ROW, LEFT_KNIGHTS_SPAWN_FIRST_COL,
KNIGHTS_SPAWN_WIDTH, KNIGHTS_SPAWN_HEIGHT)
spawner.spawn_in_area(['k_r' for _ in range(4)], RIGHT_KNIGHTS_SPAWN_FIRST_ROW, RIGHT_KNIGHTS_SPAWN_FIRST_COL,
KNIGHTS_SPAWN_WIDTH, KNIGHTS_SPAWN_HEIGHT)
spawner.spawn_in_area(['c'], CASTLE_SPAWN_FIRST_ROW, CASTLE_SPAWN_FIRST_COL, CASTLE_SPAWN_WIDTH,
CASTLE_SPAWN_HEIGHT, 2)
spawner.spawn_where_possible(['m' for _ in range(NBR_OF_MONSTERS)])
def setup_base_tiles(self):
textures = []
@ -57,15 +66,15 @@ class Level:
for col_index, col in enumerate(row):
# add base tiles, e.g. water, tree, grass
if col == MAP_ALIASES.get('WATER'):
if col == "w":
texture_index = 5
texture_surface = textures[texture_index][1]
Tile((col_index, row_index), texture_surface, self.sprites, 'w')
elif col == MAP_ALIASES.get('TREE'):
elif col == "t":
texture_index = 6
texture_surface = textures[texture_index][1]
Tile((col_index, row_index), texture_surface, self.sprites, 't')
elif col == MAP_ALIASES.get('SAND'):
elif col == "s":
texture_index = 4
texture_surface = textures[texture_index][1]
Tile((col_index, row_index), texture_surface, self.sprites)
@ -82,148 +91,37 @@ class Level:
for col_index, col in enumerate(row):
# add objects, e.g. knights, monsters, castle
if col == MAP_ALIASES.get('KNIGHT_BLUE'):
if col == "k_b":
knight = Knight(self.screen, (col_index, row_index), self.sprites, "blue")
self.map[row_index][col_index] = knight
self.list_knights_blue.append(knight)
elif col == MAP_ALIASES.get('KNIGHT_RED'):
elif col == "k_r":
knight = Knight(self.screen, (col_index, row_index), self.sprites, "red")
self.map[row_index][col_index] = knight
self.list_knights_red.append(knight)
elif col == MAP_ALIASES.get('MONSTER'):
elif col == "m":
monster = Monster(self.screen, (col_index, row_index), self.sprites)
self.map[row_index][col_index] = monster
self.list_monsters.append(monster)
elif col == MAP_ALIASES.get('CASTLE'):
elif col == "c":
castle_count += 1
if castle_count == 4:
castle = Castle(self.screen, (col_index, row_index), self.sprites)
self.map[row_index][col_index] = castle
self.list_castles.append(castle)
#def attack_knight(self, knights_list, positions, current_knight):
# op_pos_1 = current_knight.position[0] - 1, current_knight.position[1]
# positions.append(op_pos_1)
# op_pos_2 = current_knight.position[0], current_knight.position[1] - 1
# positions.append(op_pos_2)
# op_pos_3 = current_knight.position[0] + 1, current_knight.position[1]
# positions.append(op_pos_3)
# op_pos_4 = current_knight.position[0], current_knight.position[1] + 1
# positions.append(op_pos_4)
# for some_knight in knights_list:
# for some_position in positions:
# if (some_knight.position == some_position and some_knight.team != current_knight.team):
# some_knight.health_bar.take_dmg(current_knight.attack)
# if some_knight.health_bar.current_hp == 0:
# some_knight.kill()
# positions.clear()
def attack_knight_left(self, knights_list, current_knight):
position_left = current_knight.position[0] - 1, current_knight.position[1]
for some_knight in knights_list:
if (some_knight.position == position_left and some_knight.team != current_knight.team):
some_knight.health_bar.take_dmg(current_knight.attack)
if some_knight.health_bar.current_hp <= 0:
some_knight.kill()
self.add_points(current_knight.team, 5)
for monster in self.list_monsters:
if monster.position == position_left:
monster.health_bar.take_dmg(current_knight.attack)
if monster.health_bar.current_hp <= 0:
monster.kill()
self.add_points(current_knight.team, monster.points)
else:
current_knight.health_bar.take_dmg(monster.attack)
if current_knight.health_bar.current_hp <= 0:
current_knight.kill()
for castle in self.list_castles:
if castle.position == position_left:
castle.health_bar.take_dmg(current_knight.attack)
def attack_knight_right(self, knights_list, current_knight):
position_right = current_knight.position[0] + 1, current_knight.position[1]
for some_knight in knights_list:
if (some_knight.position == position_right and some_knight.team != current_knight.team):
some_knight.health_bar.take_dmg(current_knight.attack)
if some_knight.health_bar.current_hp == 0:
some_knight.kill()
self.add_points(current_knight.team, 5)
for monster in self.list_monsters:
if monster.position == position_right:
monster.health_bar.take_dmg(current_knight.attack)
if monster.health_bar.current_hp <= 0:
monster.kill()
self.add_points(current_knight.team, monster.points)
else:
current_knight.health_bar.take_dmg(monster.attack)
if current_knight.health_bar.current_hp <= 0:
current_knight.kill()
for castle in self.list_castles:
if castle.position == position_right:
castle.health_bar.take_dmg(current_knight.attack)
def attack_knight_up(self, knights_list, current_knight):
position_up = current_knight.position[0], current_knight.position[1] - 1
for some_knight in knights_list:
if (some_knight.position == position_up and some_knight.team != current_knight.team):
some_knight.health_bar.take_dmg(current_knight.attack)
if some_knight.health_bar.current_hp == 0:
some_knight.kill()
self.add_points(current_knight.team, 5)
for monster in self.list_monsters:
if monster.position == position_up:
monster.health_bar.take_dmg(current_knight.attack)
if monster.health_bar.current_hp <= 0:
monster.kill()
self.add_points(current_knight.team, monster.points)
else:
current_knight.health_bar.take_dmg(monster.attack)
if current_knight.health_bar.current_hp <= 0:
current_knight.kill()
for castle in self.list_castles:
if castle.position == position_up:
castle.health_bar.take_dmg(current_knight.attack)
def attack_knight_down(self, knights_list, current_knight):
position_down = current_knight.position[0], current_knight.position[1] + 1
for some_knight in knights_list:
if (some_knight.position == position_down and some_knight.team != current_knight.team):
some_knight.health_bar.take_dmg(current_knight.attack)
if some_knight.health_bar.current_hp == 0:
some_knight.kill()
self.add_points(current_knight.team, 5)
for monster in self.list_monsters:
if monster.position == position_down:
monster.health_bar.take_dmg(current_knight.attack)
if monster.health_bar.current_hp <= 0:
monster.kill()
self.add_points(current_knight.team, monster.points)
else:
current_knight.health_bar.take_dmg(monster.attack)
if current_knight.health_bar.current_hp <= 0:
current_knight.kill()
for castle in self.list_castles:
if castle.position == position_down:
castle.health_bar.take_dmg(current_knight.attack)
def handle_turn(self):
print("next turn")
current_knight = self.knights_queue.dequeue_knight()
knights_list = self.list_knights_red + self.list_knights_blue
print("next turn " + current_knight.team)
knight_pos_x = current_knight.position[0]
knight_pos_y = current_knight.position[1]
positions = []
goal_list = self.decision_tree.predict_move(grid=self.map, current_knight=current_knight,
monsters=self.list_monsters,
opponents=self.list_knights_blue
if current_knight.team_alias() == 'k_r' else self.list_knights_red,
opponents=self.list_knights_red
if current_knight.team_alias == 'k_r' else self.list_knights_blue,
castle=self.list_castles[0])
if (len(self.list_knights_blue) == 0 or len(self.list_knights_red) == 0):
pygame.quit()
if len(goal_list) == 0:
return
@ -236,19 +134,6 @@ class Level:
return
next_action = action_list.pop(0)
#if current_knight.health_bar.current_hp != 0:
#self.attack_knight(knights_list, positions, current_knight)
if current_knight.direction.name == UP:
self.attack_knight_up(knights_list, current_knight)
elif current_knight.direction.name == DOWN:
self.attack_knight_down(knights_list, current_knight)
elif current_knight.direction.name == RIGHT:
self.attack_knight_right(knights_list, current_knight)
elif current_knight.direction.name == LEFT:
self.attack_knight_left(knights_list, current_knight)
if next_action == TURN_LEFT:
self.logs.enqueue_log(f'AI {current_knight.team}: Obrót w lewo.')
current_knight.rotate_left()
@ -257,9 +142,9 @@ class Level:
current_knight.rotate_right()
elif next_action == FORWARD:
current_knight.step_forward()
self.map[knight_pos_y][knight_pos_x] = MAP_ALIASES.get("GRASS")
self.map[knight_pos_y][knight_pos_x] = 'g'
# update knight on map
# update knight on map
if current_knight.direction.name == UP:
self.logs.enqueue_log(f'AI {current_knight.team}: Ruch do góry.')
self.map[knight_pos_y - 1][knight_pos_x] = current_knight.team_alias()
@ -281,6 +166,3 @@ class Level:
# update and draw the game
self.sprites.draw(self.screen)
self.sprites.update()

View File

@ -16,7 +16,8 @@ class Castle(pygame.sprite.Sprite):
position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
self.rect = self.image.get_rect(center=position_in_px)
self.max_hp = 80
self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
self.current_hp = random.randint(1, self.max_hp)
self.health_bar = HealthBar(screen, self.rect, current_hp=self.current_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
def update(self):
self.health_bar.update()

View File

@ -7,11 +7,8 @@ from common.helpers import parse_cord
from logic.health_bar import HealthBar
def load_knight_textures(team):
if team == "blue":
random_index = 3
else:
random_index = 4
def load_knight_textures():
random_index = random.randint(1, 4)
states = [
pygame.image.load(f'resources/textures/knight_{random_index}_up.png').convert_alpha(), # up = 0
pygame.image.load(f'resources/textures/knight_{random_index}_right.png').convert_alpha(), # right = 1
@ -27,7 +24,7 @@ class Knight(pygame.sprite.Sprite):
super().__init__(group)
self.direction = Direction.DOWN
self.states = load_knight_textures(team)
self.states = load_knight_textures()
self.image = self.states[self.direction.value]
self.position = position
@ -36,11 +33,11 @@ class Knight(pygame.sprite.Sprite):
self.rect = self.image.get_rect(topleft=position_in_px)
self.team = team
self.max_hp = random.randint(9, 13)
self.attack = random.randint(2, 4)
self.max_hp = random.randint(7, 12)
self.attack = random.randint(4, 7)
self.defense = random.randint(1, 4)
self.points = 1
self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
self.health_bar = HealthBar(screen, self.rect, current_hp=random.randint(1, self.max_hp), max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
def rotate_left(self):
self.direction = self.direction.left()

View File

@ -22,13 +22,14 @@ class Monster(pygame.sprite.Sprite):
position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
self.rect = self.image.get_rect(topleft=position_in_px)
self.position = position
self.max_hp = random.randrange(15, 20)
self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp,
self.max_hp = random.randrange(15, 25)
self.current_hp = random.randint(1, self.max_hp)
self.health_bar = HealthBar(screen, self.rect, current_hp=self.current_hp, max_hp=self.max_hp,
calculate_xy=True, calculate_size=True)
self.attack = random.randrange(4, 6)
self.attack = random.randrange(2, 10)
if self.image == monster_images[0]:
self.max_hp = 20
self.attack = 6
self.attack = 9
self.points = 10
elif self.image == monster_images[1]:
self.max_hp = 15

Binary file not shown.

View File

@ -1 +0,0 @@
{"map": [[0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 3, 3, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3], [0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3], [0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 3], [0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2], [0, 0, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 0, 2, 2, 2, 0, 0, 0, 0, 0, 7, 2, 0], [0, 0, 0, 6, 0, 0, 0, 2, 2, 2, 0, 5, 5, 0, 2, 0, 0, 2, 2, 2, 2, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 5, 5, 0, 2, 0, 0, 0, 0, 2, 2, 1, 1, 7], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 1, 7], [6, 0, 0, 6, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 1, 1, 0], [6, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 1, 1, 7, 0], [0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 3, 1, 1, 1, 0], [0, 3, 3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 1, 0, 0], [0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}

View File

@ -1 +0,0 @@
{"map": [[0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0], [0, 3, 3, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 3, 3, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 2, 2, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 6, 3, 3, 0, 0, 0, 0, 0, 3, 0, 4, 0, 3, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 7, 7, 0, 0], [6, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 3, 7, 0, 0, 0], [0, 0, 6, 6, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0], [0, 2, 2, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0], [2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}

View File

@ -1 +0,0 @@
{"map": [[0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 3], [0, 0, 0, 0, 2, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 0], [0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 2, 0], [0, 0, 3, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0], [0, 0, 3, 0, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0], [0, 0, 3, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 6, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0], [0, 6, 0, 0, 0, 0, 3, 0, 0, 0, 0, 5, 5, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 5, 5, 1, 2, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 4], [6, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 7, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 3, 2, 0, 0, 0, 0, 0, 0], [0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0], [0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}

View File

@ -1,31 +1,6 @@
import pygame
from ui.screens.screen import Screen
from common.colors import BLACK
from common.helpers import draw_text
class Credits(Screen):
def __init__(self, screen, clock):
super().__init__('credits', screen, clock)
def display_screen(self):
running = True
while running:
self.screen.fill((252, 164, 12))
draw_text('Twórcy :', BLACK, self.screen, 520, 150)
draw_text('Angelika Iskra', BLACK, self.screen, 520, 250)
draw_text('Dawid Korzępa', BLACK, self.screen, 520, 300)
draw_text('Juliusz Sadowski', BLACK, self.screen, 520, 350)
draw_text('Aleksandra Muczyńska', BLACK, self.screen, 520, 400)
draw_text('Jerzy Tomaszewski', BLACK, self.screen, 520, 450)
draw_text('Mateusz Konofał', BLACK, self.screen, 520, 500)
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:
running = False
pygame.display.update()
self.clock.tick(60)

View File

@ -23,8 +23,6 @@ class Stats:
pygame.Rect(self.x + 210, self.y + 210, 100, 15),
current_hp=sum([knight.get_current_hp() for knight in self.list_knights_red]),
max_hp=sum([knight.get_max_hp() for knight in self.list_knights_red]))
self.blue_team_points = 0
self.red_team_points = 0
def update(self):
@ -52,16 +50,12 @@ class Stats:
# texts
draw_text('Rycerze: ' + str(len(self.list_knights_blue)), FONT_DARK, self.screen, self.x + 35, self.y + 240, 18) # blue
draw_text('Fortece: ' + str(len(self.list_knights_red)), FONT_DARK, self.screen, self.x + 35, self.y + 270, 18) # red
draw_text('Rycerze: ' + str(len(self.list_knights_red)), FONT_DARK, self.screen, self.x + 215, self.y + 240, 18)
draw_text('Rycerze: 4', FONT_DARK, self.screen, self.x + 215, self.y + 240, 18)
draw_text('Fortece: 0', FONT_DARK, self.screen, self.x + 215, self.y + 270, 18)
# points
pygame.draw.rect(self.screen, ORANGE, pygame.Rect(self.x, self.y + 390, 340, 3))
draw_text('PUNKTY: ' + str(self.blue_team_points), FONT_DARK, self.screen, self.x + 35, self.y + 408, 18, True)
draw_text('PUNKTY: ' + str(self.red_team_points), FONT_DARK, self.screen, self.x + 215, self.y + 408, 18, True)
def add_points(self, team, points):
if team == "blue":
self.blue_team_points += points
else:
self.red_team_points += points
draw_text('PUNKTY: 10', FONT_DARK, self.screen, self.x + 35, self.y + 408, 18, True)
draw_text('PUNKTY: 10', FONT_DARK, self.screen, self.x + 215, self.y + 408, 18, True)