Compare commits
No commits in common. "master" and "temp" have entirely different histories.
3
.gitignore
vendored
@ -149,5 +149,4 @@ cython_debug/
|
|||||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
.idea/
|
.idea/
|
||||||
/algorithms/neural_network/data/
|
|
@ -4,11 +4,10 @@ import heapq
|
|||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from typing import Tuple, Optional, List
|
from typing import Tuple, Optional, List
|
||||||
|
|
||||||
from algorithms.genetic.const import MAP_ALIASES
|
|
||||||
from common.constants import ROWS, COLUMNS, LEFT, RIGHT, UP, DOWN
|
from common.constants import ROWS, COLUMNS, LEFT, RIGHT, UP, DOWN
|
||||||
from common.helpers import directions
|
from common.helpers import directions
|
||||||
|
|
||||||
EMPTY_FIELDS = [MAP_ALIASES.get("SAND"), MAP_ALIASES.get("GRASS"), ' ']
|
EMPTY_FIELDS = ['s', 'g', ' ']
|
||||||
|
|
||||||
TURN_LEFT = 'TURN_LEFT'
|
TURN_LEFT = 'TURN_LEFT'
|
||||||
TURN_RIGHT = 'TURN_RIGHT'
|
TURN_RIGHT = 'TURN_RIGHT'
|
||||||
|
@ -1,142 +0,0 @@
|
|||||||
from dataclasses import dataclass
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from const import *
|
|
||||||
from typing import List, Dict, Tuple
|
|
||||||
|
|
||||||
import numpy.typing as npt
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Position:
|
|
||||||
row: int
|
|
||||||
col: int
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Area:
|
|
||||||
position: Position
|
|
||||||
width: int
|
|
||||||
height: int
|
|
||||||
|
|
||||||
|
|
||||||
AREAS_TO_CROSS = [
|
|
||||||
# up above left knights spawn
|
|
||||||
Area(position=Position(row=0, col=0),
|
|
||||||
width=KNIGHTS_SPAWN_WIDTH,
|
|
||||||
height=LEFT_KNIGHTS_SPAWN_FIRST_ROW),
|
|
||||||
|
|
||||||
# down below left knights spawn
|
|
||||||
Area(position=Position(row=LEFT_KNIGHTS_SPAWN_FIRST_ROW + KNIGHTS_SPAWN_HEIGHT, col=0),
|
|
||||||
width=KNIGHTS_SPAWN_WIDTH,
|
|
||||||
height=ROWS - LEFT_KNIGHTS_SPAWN_FIRST_ROW - KNIGHTS_SPAWN_HEIGHT),
|
|
||||||
|
|
||||||
# between left knights spawn and castle
|
|
||||||
Area(position=Position(row=0, col=KNIGHTS_SPAWN_WIDTH),
|
|
||||||
width=CASTLE_SPAWN_FIRST_COL - KNIGHTS_SPAWN_WIDTH,
|
|
||||||
height=ROWS),
|
|
||||||
|
|
||||||
# up above castle
|
|
||||||
Area(position=Position(row=0, col=CASTLE_SPAWN_FIRST_COL),
|
|
||||||
width=2,
|
|
||||||
height=CASTLE_SPAWN_FIRST_ROW),
|
|
||||||
|
|
||||||
# down below castle
|
|
||||||
Area(position=Position(row=CASTLE_SPAWN_FIRST_ROW + 2, col=CASTLE_SPAWN_FIRST_COL),
|
|
||||||
width=2,
|
|
||||||
height=ROWS - CASTLE_SPAWN_FIRST_ROW - 2),
|
|
||||||
|
|
||||||
# between castle and right knights spawn
|
|
||||||
Area(position=Position(row=0, col=CASTLE_SPAWN_FIRST_COL + 2),
|
|
||||||
width=RIGHT_KNIGHTS_SPAWN_FIRST_COL - CASTLE_SPAWN_FIRST_COL - 2,
|
|
||||||
height=ROWS),
|
|
||||||
|
|
||||||
# up above right knights spawn
|
|
||||||
Area(position=Position(row=0, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
|
|
||||||
width=KNIGHTS_SPAWN_WIDTH,
|
|
||||||
height=RIGHT_KNIGHTS_SPAWN_FIRST_ROW),
|
|
||||||
|
|
||||||
# down below right knights spawn
|
|
||||||
Area(position=Position(row=RIGHT_KNIGHTS_SPAWN_FIRST_ROW + KNIGHTS_SPAWN_HEIGHT, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
|
|
||||||
width=KNIGHTS_SPAWN_WIDTH,
|
|
||||||
height=ROWS - RIGHT_KNIGHTS_SPAWN_FIRST_ROW - KNIGHTS_SPAWN_HEIGHT),
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def dfs(grid: npt.NDArray, visited: Dict[Tuple[int, int], bool], position: Position, rows: int, cols: int) -> None:
|
|
||||||
visited[(position.row, position.col)] = True
|
|
||||||
|
|
||||||
row_vector = [0, 0, 1, -1]
|
|
||||||
col_vector = [-1, 1, 0, 0]
|
|
||||||
|
|
||||||
neighbours = []
|
|
||||||
for i in range(4):
|
|
||||||
rr = position.row + row_vector[i]
|
|
||||||
cc = position.col + col_vector[i]
|
|
||||||
if rr < 0 or rr >= ROWS:
|
|
||||||
continue
|
|
||||||
elif cc < 0 or cc >= COLUMNS:
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
p = Position(rr, cc)
|
|
||||||
if (p.row, p.col) in visited:
|
|
||||||
neighbours.append(p)
|
|
||||||
|
|
||||||
for neighbour in neighbours:
|
|
||||||
if not visited[(neighbour.row, neighbour.col)]:
|
|
||||||
dfs(grid, visited, neighbour, rows, cols)
|
|
||||||
|
|
||||||
|
|
||||||
def get_islands(grid: npt.NDArray, positions: List[Position], rows: int = ROWS, cols: int = COLUMNS) -> List[Position]:
|
|
||||||
"""it returns list of all islands roots"""
|
|
||||||
visited = {}
|
|
||||||
|
|
||||||
for position in positions:
|
|
||||||
visited[(position.row, position.col)] = False
|
|
||||||
|
|
||||||
islands = 0
|
|
||||||
roots = []
|
|
||||||
for position in positions:
|
|
||||||
if not visited[(position.row, position.col)]:
|
|
||||||
dfs(grid, visited, position, rows, cols)
|
|
||||||
roots.append(position)
|
|
||||||
islands += 1
|
|
||||||
|
|
||||||
return roots
|
|
||||||
|
|
||||||
|
|
||||||
def find_neighbours(grid: npt.NDArray, col: int, row: int) -> List[Position]:
|
|
||||||
dr = [-1, 1, 0, 0]
|
|
||||||
dc = [0, 0, -1, 1]
|
|
||||||
|
|
||||||
neighbours = []
|
|
||||||
|
|
||||||
for i in range(4):
|
|
||||||
rr = row + dr[i]
|
|
||||||
cc = col + dc[i]
|
|
||||||
|
|
||||||
if 0 <= rr < ROWS and 0 <= cc < COLUMNS and grid[rr][cc] == MAP_ALIASES.get('GRASS'):
|
|
||||||
neighbours.append(Position(row=rr, col=cc))
|
|
||||||
|
|
||||||
return neighbours
|
|
||||||
|
|
||||||
|
|
||||||
def get_tiles_positions(grid: npt.NDArray):
|
|
||||||
sands = []
|
|
||||||
trees = []
|
|
||||||
waters = []
|
|
||||||
monsters = []
|
|
||||||
|
|
||||||
for row_num in range(len(grid)):
|
|
||||||
for col_num in range(len(grid[row_num])):
|
|
||||||
if grid[row_num][col_num] == MAP_ALIASES.get('WATER'):
|
|
||||||
waters.append(Position(row=row_num, col=col_num))
|
|
||||||
elif grid[row_num][col_num] == MAP_ALIASES.get('TREE'):
|
|
||||||
trees.append(Position(row=row_num, col=col_num))
|
|
||||||
elif grid[row_num][col_num] == MAP_ALIASES.get('SAND'):
|
|
||||||
sands.append(Position(row=row_num, col=col_num))
|
|
||||||
elif grid[row_num][col_num] == MAP_ALIASES.get('MONSTER'):
|
|
||||||
monsters.append(Position(row=row_num, col=col_num))
|
|
||||||
|
|
||||||
return sands, trees, waters, monsters
|
|
@ -1,29 +0,0 @@
|
|||||||
# map config
|
|
||||||
KNIGHTS_PER_TEAM_COUNT = 4
|
|
||||||
SAND_COUNT = 21
|
|
||||||
WATER_COUNT = 21
|
|
||||||
TREE_COUNT = 37
|
|
||||||
MONSTERS_COUNT = 2
|
|
||||||
CASTLES_COUNT = 1
|
|
||||||
ROWS = 19
|
|
||||||
COLUMNS = 24
|
|
||||||
KNIGHTS_SPAWN_WIDTH = 4
|
|
||||||
KNIGHTS_SPAWN_HEIGHT = 7
|
|
||||||
LEFT_KNIGHTS_SPAWN_FIRST_ROW = 6
|
|
||||||
LEFT_KNIGHTS_SPAWN_FIRST_COL = 0
|
|
||||||
RIGHT_KNIGHTS_SPAWN_FIRST_ROW = 6
|
|
||||||
RIGHT_KNIGHTS_SPAWN_FIRST_COL = 20
|
|
||||||
CASTLE_SPAWN_FIRST_ROW = 7
|
|
||||||
CASTLE_SPAWN_FIRST_COL = 11
|
|
||||||
|
|
||||||
# map aliases
|
|
||||||
MAP_ALIASES = {
|
|
||||||
"GRASS": 0,
|
|
||||||
"SAND": 1,
|
|
||||||
"WATER": 2,
|
|
||||||
"TREE": 3,
|
|
||||||
"MONSTER": 4,
|
|
||||||
"CASTLE": 5,
|
|
||||||
"KNIGHT_RED": 6,
|
|
||||||
"KNIGHT_BLUE": 7,
|
|
||||||
}
|
|
@ -1,166 +0,0 @@
|
|||||||
import math
|
|
||||||
import random
|
|
||||||
from copy import deepcopy
|
|
||||||
from random import randrange
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import numpy.typing as npt
|
|
||||||
|
|
||||||
from common import Position, get_islands, AREAS_TO_CROSS, find_neighbours, get_tiles_positions
|
|
||||||
from const import *
|
|
||||||
|
|
||||||
|
|
||||||
class Genome:
|
|
||||||
grid: npt.NDArray
|
|
||||||
knights_red: List[Position]
|
|
||||||
knights_blue: List[Position]
|
|
||||||
waters: List[Position]
|
|
||||||
trees: List[Position]
|
|
||||||
sands: List[Position]
|
|
||||||
monsters: List[Position]
|
|
||||||
fitness: int
|
|
||||||
sand_islands: List[Position]
|
|
||||||
tree_islands: List[Position]
|
|
||||||
water_islands: List[Position]
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
self.grid = np.zeros((ROWS, COLUMNS), dtype=int)
|
|
||||||
self.fitness = 0
|
|
||||||
|
|
||||||
self.knights_red = spawn_objects_in_given_area(
|
|
||||||
grid=self.grid,
|
|
||||||
object_alias=MAP_ALIASES.get("KNIGHT_RED"),
|
|
||||||
objects_count=KNIGHTS_PER_TEAM_COUNT,
|
|
||||||
spawn_position_start=Position(row=LEFT_KNIGHTS_SPAWN_FIRST_ROW, col=LEFT_KNIGHTS_SPAWN_FIRST_COL),
|
|
||||||
width=KNIGHTS_SPAWN_WIDTH,
|
|
||||||
height=KNIGHTS_SPAWN_HEIGHT
|
|
||||||
)
|
|
||||||
|
|
||||||
self.knights_blue = spawn_objects_in_given_area(
|
|
||||||
grid=self.grid,
|
|
||||||
object_alias=MAP_ALIASES.get("KNIGHT_BLUE"),
|
|
||||||
objects_count=KNIGHTS_PER_TEAM_COUNT,
|
|
||||||
spawn_position_start=Position(row=RIGHT_KNIGHTS_SPAWN_FIRST_ROW, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
|
|
||||||
width=KNIGHTS_SPAWN_WIDTH,
|
|
||||||
height=KNIGHTS_SPAWN_HEIGHT
|
|
||||||
)
|
|
||||||
|
|
||||||
spawn_objects_in_given_area(
|
|
||||||
grid=self.grid,
|
|
||||||
object_alias=MAP_ALIASES.get("CASTLE"),
|
|
||||||
objects_count=4,
|
|
||||||
spawn_position_start=Position(row=CASTLE_SPAWN_FIRST_ROW, col=CASTLE_SPAWN_FIRST_COL),
|
|
||||||
width=2,
|
|
||||||
height=2
|
|
||||||
)
|
|
||||||
|
|
||||||
self.waters = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("WATER"),
|
|
||||||
objects_count=WATER_COUNT)
|
|
||||||
self.trees = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("TREE"),
|
|
||||||
objects_count=TREE_COUNT)
|
|
||||||
self.sands = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("SAND"),
|
|
||||||
objects_count=SAND_COUNT)
|
|
||||||
self.monsters = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("MONSTER"),
|
|
||||||
objects_count=MONSTERS_COUNT)
|
|
||||||
|
|
||||||
self.sand_islands = get_islands(self.grid, self.sands)
|
|
||||||
self.tree_islands = get_islands(self.grid, self.trees)
|
|
||||||
self.water_islands = get_islands(self.grid, self.waters)
|
|
||||||
|
|
||||||
def update_map(self):
|
|
||||||
self.sands, self.trees, self.waters, self.monsters = get_tiles_positions(self.grid)
|
|
||||||
|
|
||||||
self.sand_islands = get_islands(self.grid, self.sands)
|
|
||||||
self.tree_islands = get_islands(self.grid, self.trees)
|
|
||||||
self.water_islands = get_islands(self.grid, self.waters)
|
|
||||||
|
|
||||||
def calc_fitness(self):
|
|
||||||
score = SAND_COUNT + TREE_COUNT + WATER_COUNT
|
|
||||||
score = score - len(self.sand_islands) - len(self.tree_islands) - len(self.water_islands)
|
|
||||||
|
|
||||||
sands, trees, waters, monsters = get_tiles_positions(self.grid)
|
|
||||||
|
|
||||||
if len(monsters) != MONSTERS_COUNT:
|
|
||||||
self.fitness = 0
|
|
||||||
return
|
|
||||||
|
|
||||||
if len(sands) < SAND_COUNT or len(trees) < TREE_COUNT or len(waters) < WATER_COUNT:
|
|
||||||
self.fitness = 5
|
|
||||||
return
|
|
||||||
|
|
||||||
self.fitness = score
|
|
||||||
|
|
||||||
def crossover(self, partner):
|
|
||||||
# replace a randomly selected part of the grid with partner's part
|
|
||||||
child = Genome()
|
|
||||||
child.grid = deepcopy(self.grid)
|
|
||||||
area_to_cross = random.choice(AREAS_TO_CROSS)
|
|
||||||
|
|
||||||
for row in range(area_to_cross.position.row, area_to_cross.position.row + area_to_cross.height):
|
|
||||||
for col in range(area_to_cross.position.col, area_to_cross.position.col + area_to_cross.width):
|
|
||||||
child.grid[row][col] = partner.grid[row][col]
|
|
||||||
|
|
||||||
child.update_map()
|
|
||||||
|
|
||||||
return child
|
|
||||||
|
|
||||||
def mutate(self, mutation_rate: float):
|
|
||||||
# remove 1 item from a random island and add a neighbor to another island
|
|
||||||
if random.random() < mutation_rate:
|
|
||||||
|
|
||||||
# select islands of the same, random type
|
|
||||||
islands_of_same_type = random.choice([self.sand_islands, self.tree_islands, self.water_islands])
|
|
||||||
random_index = random.randint(0, len(islands_of_same_type) - 1)
|
|
||||||
island = islands_of_same_type[random_index]
|
|
||||||
next_island = islands_of_same_type[(random_index + 1) % len(islands_of_same_type)]
|
|
||||||
|
|
||||||
free_tiles_nearby = find_neighbours(self.grid, next_island.col, next_island.row)
|
|
||||||
|
|
||||||
tile_type = self.grid[island.row][island.col]
|
|
||||||
self.grid[island.row][island.col] = MAP_ALIASES.get('GRASS')
|
|
||||||
|
|
||||||
# todo: if there are no free tiles around then randomize another next_island
|
|
||||||
if len(free_tiles_nearby) > 0:
|
|
||||||
random_free_tile = random.choice(free_tiles_nearby)
|
|
||||||
island.row = random_free_tile.row
|
|
||||||
island.col = random_free_tile.col
|
|
||||||
self.grid[island.row][island.col] = tile_type
|
|
||||||
|
|
||||||
self.update_map()
|
|
||||||
|
|
||||||
|
|
||||||
def is_empty(grid: npt.NDArray, position: Position) -> bool:
|
|
||||||
return grid[position.row, position.col] in [MAP_ALIASES.get("GRASS"), MAP_ALIASES.get("SAND")]
|
|
||||||
|
|
||||||
|
|
||||||
def is_invalid_area(spawn_position_start, height, width) -> bool:
|
|
||||||
return spawn_position_start.row + height - 1 < 0 or \
|
|
||||||
spawn_position_start.row + height - 1 >= ROWS or \
|
|
||||||
spawn_position_start.col + width - 1 < 0 or \
|
|
||||||
spawn_position_start.col + width - 1 >= COLUMNS
|
|
||||||
|
|
||||||
|
|
||||||
def spawn_objects_in_given_area(grid: npt.NDArray,
|
|
||||||
object_alias: str,
|
|
||||||
objects_count: int = 1,
|
|
||||||
spawn_position_start: Position = Position(row=0, col=0),
|
|
||||||
width: int = COLUMNS,
|
|
||||||
height: int = ROWS) -> List[Position]:
|
|
||||||
if is_invalid_area(spawn_position_start, height, width):
|
|
||||||
raise ValueError("Invalid spawn area")
|
|
||||||
|
|
||||||
objects_remaining = int(objects_count)
|
|
||||||
positions = []
|
|
||||||
|
|
||||||
while objects_remaining > 0:
|
|
||||||
row = randrange(spawn_position_start.row, spawn_position_start.row + height)
|
|
||||||
col = randrange(spawn_position_start.col, spawn_position_start.col + width)
|
|
||||||
position = Position(row=row, col=col)
|
|
||||||
|
|
||||||
if is_empty(grid=grid, position=position):
|
|
||||||
grid[position.row, position.col] = object_alias
|
|
||||||
positions.append(position)
|
|
||||||
objects_remaining -= 1
|
|
||||||
|
|
||||||
return positions
|
|
@ -1,26 +0,0 @@
|
|||||||
from algorithms.genetic.genome import Genome
|
|
||||||
from algorithms.genetic.map_importer_exporter import export_map
|
|
||||||
from population import Population
|
|
||||||
|
|
||||||
|
|
||||||
def main() -> None:
|
|
||||||
population_size = 500
|
|
||||||
mutation_rate = 0.3
|
|
||||||
|
|
||||||
population = Population(mutation_rate, population_size, 55)
|
|
||||||
|
|
||||||
while not population.evaluate():
|
|
||||||
# create next generation
|
|
||||||
population.generate()
|
|
||||||
|
|
||||||
# calc fitness
|
|
||||||
population.calc_fitness()
|
|
||||||
|
|
||||||
print(population.best_genome.grid)
|
|
||||||
print("Fitness of the best: ", population.best_genome.fitness)
|
|
||||||
|
|
||||||
export_map(population.best_genome.grid)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
@ -1,42 +0,0 @@
|
|||||||
import json
|
|
||||||
import random
|
|
||||||
import string
|
|
||||||
from datetime import datetime
|
|
||||||
from pathlib import Path
|
|
||||||
import numpy
|
|
||||||
import numpy.typing as npt
|
|
||||||
from os import listdir
|
|
||||||
from os.path import isfile, join
|
|
||||||
|
|
||||||
|
|
||||||
# Save map to file
|
|
||||||
def export_map(grid: npt.NDArray):
|
|
||||||
json_data = {"map": grid.tolist()}
|
|
||||||
|
|
||||||
now = datetime.now()
|
|
||||||
file_name = "map_" + now.strftime("%Y_%m_%d_%H_%M_%S") + ".json"
|
|
||||||
path = Path("../../resources/maps/")
|
|
||||||
file_to_open = path / file_name
|
|
||||||
|
|
||||||
with open(file_to_open, "w+") as write_file:
|
|
||||||
json.dump(json_data, write_file)
|
|
||||||
print("Saved map to file " + file_name)
|
|
||||||
|
|
||||||
|
|
||||||
def import_random_map() -> object:
|
|
||||||
path = "resources/maps"
|
|
||||||
files = [f for f in listdir(path) if isfile(join(path, f))]
|
|
||||||
random_map_name = random.choice(files)
|
|
||||||
return import_map(random_map_name)
|
|
||||||
|
|
||||||
|
|
||||||
# Read map from file
|
|
||||||
def import_map(file_name: string) -> object:
|
|
||||||
file_to_open = "resources/maps/" + file_name
|
|
||||||
with open(file_to_open, "r") as read_file:
|
|
||||||
print("Reading map from file " + file_name)
|
|
||||||
decoded_json = json.load(read_file)
|
|
||||||
|
|
||||||
decoded_grid = numpy.asarray(decoded_json["map"])
|
|
||||||
print(decoded_grid)
|
|
||||||
return decoded_grid.tolist()
|
|
@ -1,81 +0,0 @@
|
|||||||
import random
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import numpy.typing as npt
|
|
||||||
|
|
||||||
from genome import Genome
|
|
||||||
|
|
||||||
|
|
||||||
class Population:
|
|
||||||
population: List[Genome] = [] # array to hold the current population
|
|
||||||
mating_pool: List[Genome] = [] # array which we will use for our "mating pool"
|
|
||||||
generations: int = 0 # number of generations
|
|
||||||
finished: bool = False # are we finished evolving?
|
|
||||||
mutation_rate: float
|
|
||||||
perfect_score: int
|
|
||||||
best_genome: Genome
|
|
||||||
|
|
||||||
def __init__(self, mutation_rate, population_size, perfect_score=20):
|
|
||||||
self.mutation_rate = mutation_rate
|
|
||||||
self.perfect_score = perfect_score
|
|
||||||
|
|
||||||
for i in range(0, population_size):
|
|
||||||
new_genome = Genome()
|
|
||||||
new_genome.calc_fitness()
|
|
||||||
self.population.append(new_genome)
|
|
||||||
|
|
||||||
# create a new generation
|
|
||||||
def generate(self):
|
|
||||||
max_fitness = 0
|
|
||||||
for genome in self.population:
|
|
||||||
if genome.fitness > max_fitness:
|
|
||||||
max_fitness = genome.fitness
|
|
||||||
|
|
||||||
print("Max fitness of generation " + str(self.generations) + " = " + str(max_fitness))
|
|
||||||
|
|
||||||
# refill the population with children from the mating pool
|
|
||||||
new_population = []
|
|
||||||
for genome in self.population:
|
|
||||||
partner_a = self.accept_reject(max_fitness)
|
|
||||||
partner_b = self.accept_reject(max_fitness)
|
|
||||||
child = partner_a.crossover(partner_b)
|
|
||||||
child.mutate(self.mutation_rate)
|
|
||||||
new_population.append(child)
|
|
||||||
|
|
||||||
self.population = new_population
|
|
||||||
self.generations += 1
|
|
||||||
|
|
||||||
# select random with correct probability from population
|
|
||||||
def accept_reject(self, max_fitness: int):
|
|
||||||
safe_flag = 0
|
|
||||||
|
|
||||||
while safe_flag < 10000:
|
|
||||||
partner = random.choice(self.population)
|
|
||||||
r = random.randint(0, max_fitness)
|
|
||||||
|
|
||||||
if r < partner.fitness:
|
|
||||||
return partner
|
|
||||||
|
|
||||||
safe_flag += 1
|
|
||||||
|
|
||||||
# compute the current "most fit" member of the population
|
|
||||||
def evaluate(self):
|
|
||||||
record = 0
|
|
||||||
best_index = 0
|
|
||||||
|
|
||||||
for index in range(len(self.population)):
|
|
||||||
genome = self.population[index]
|
|
||||||
if genome.fitness > record:
|
|
||||||
record = genome.fitness
|
|
||||||
best_index = index
|
|
||||||
|
|
||||||
self.best_genome = self.population[best_index]
|
|
||||||
if record >= self.perfect_score:
|
|
||||||
self.finished = True
|
|
||||||
|
|
||||||
return self.finished
|
|
||||||
|
|
||||||
def calc_fitness(self):
|
|
||||||
for genome in self.population:
|
|
||||||
genome.calc_fitness()
|
|
BIN
algorithms/neural_network/data/test/grass/grass1.png
Normal file
After Width: | Height: | Size: 814 B |
BIN
algorithms/neural_network/data/test/grass/grass2.png
Normal file
After Width: | Height: | Size: 820 B |
BIN
algorithms/neural_network/data/test/grass/grass3.png
Normal file
After Width: | Height: | Size: 789 B |
BIN
algorithms/neural_network/data/test/grass/grass4.png
Normal file
After Width: | Height: | Size: 1.0 KiB |
BIN
algorithms/neural_network/data/test/sand/sand.png
Normal file
After Width: | Height: | Size: 760 B |
BIN
algorithms/neural_network/data/test/tree/grass_with_tree.jpg
Normal file
After Width: | Height: | Size: 2.2 KiB |
BIN
algorithms/neural_network/data/test/water/water.png
Normal file
After Width: | Height: | Size: 725 B |
@ -0,0 +1 @@
|
|||||||
|
{}
|
@ -0,0 +1 @@
|
|||||||
|
{}
|
@ -0,0 +1 @@
|
|||||||
|
{}
|
@ -10,39 +10,23 @@ from common.constants import DEVICE, BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE, SETU
|
|||||||
|
|
||||||
class NeuralNetwork(pl.LightningModule):
|
class NeuralNetwork(pl.LightningModule):
|
||||||
def __init__(self, numChannels=3, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE, num_classes=4):
|
def __init__(self, numChannels=3, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE, num_classes=4):
|
||||||
super(NeuralNetwork, self).__init__()
|
super().__init__()
|
||||||
self.conv1 = nn.Conv2d(numChannels, 24, (3, 3), padding=1)
|
self.layer = nn.Sequential(
|
||||||
self.relu1 = nn.ReLU()
|
nn.Linear(36*36*3, 300),
|
||||||
self.maxpool1 = nn.MaxPool2d((2, 2), stride=2)
|
nn.ReLU(),
|
||||||
self.conv2 = nn.Conv2d(24, 48, (3, 3), padding=1)
|
nn.Linear(300, 4),
|
||||||
self.relu2 = nn.ReLU()
|
nn.LogSoftmax(dim=-1)
|
||||||
self.fc1 = nn.Linear(48*18*18, 800)
|
)
|
||||||
self.relu3 = nn.ReLU()
|
|
||||||
self.fc2 = nn.Linear(800, 400)
|
|
||||||
self.relu4 = nn.ReLU()
|
|
||||||
self.fc3 = nn.Linear(400, 4)
|
|
||||||
self.logSoftmax = nn.LogSoftmax(dim=1)
|
|
||||||
|
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.learning_rate = learning_rate
|
self.learning_rate = learning_rate
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.conv1(x)
|
|
||||||
x = self.relu1(x)
|
|
||||||
x = self.maxpool1(x)
|
|
||||||
x = self.conv2(x)
|
|
||||||
x = self.relu2(x)
|
|
||||||
x = x.reshape(x.shape[0], -1)
|
x = x.reshape(x.shape[0], -1)
|
||||||
x = self.fc1(x)
|
x = self.layer(x)
|
||||||
x = self.relu3(x)
|
|
||||||
x = self.fc2(x)
|
|
||||||
x = self.relu4(x)
|
|
||||||
x = self.fc3(x)
|
|
||||||
x = self.logSoftmax(x)
|
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
optimizer = Adam(self.parameters(), lr=self.learning_rate)
|
optimizer = SGD(self.parameters(), lr=self.learning_rate)
|
||||||
return optimizer
|
return optimizer
|
||||||
|
|
||||||
def training_step(self, batch, batch_idx):
|
def training_step(self, batch, batch_idx):
|
||||||
|
@ -10,8 +10,44 @@ from torch.optim import Adam
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
from pytorch_lightning.callbacks import EarlyStopping
|
from pytorch_lightning.callbacks import EarlyStopping
|
||||||
import torchvision.transforms.functional as F
|
|
||||||
from PIL import Image
|
|
||||||
|
def train(model):
|
||||||
|
model = model.to(DEVICE)
|
||||||
|
model.train()
|
||||||
|
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
|
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
|
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
||||||
|
test_loader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)
|
||||||
|
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = Adam(model.parameters(), lr=LEARNING_RATE)
|
||||||
|
|
||||||
|
for epoch in range(NUM_EPOCHS):
|
||||||
|
for batch_idx, (data, targets) in enumerate(train_loader):
|
||||||
|
data = data.to(device=DEVICE)
|
||||||
|
targets = targets.to(device=DEVICE)
|
||||||
|
|
||||||
|
scores = model(data)
|
||||||
|
loss = criterion(scores, targets)
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if batch_idx % 4 == 0:
|
||||||
|
print("epoch: %d loss: %.4f" % (epoch, loss.item()))
|
||||||
|
|
||||||
|
print("FINISHED TRAINING!")
|
||||||
|
torch.save(model.state_dict(), "./learnednetwork.pth")
|
||||||
|
|
||||||
|
print("Checking accuracy for the train set.")
|
||||||
|
check_accuracy(train_loader)
|
||||||
|
print("Checking accuracy for the test set.")
|
||||||
|
check_accuracy(test_loader)
|
||||||
|
print("Checking accuracy for the tiles.")
|
||||||
|
check_accuracy_tiles()
|
||||||
|
|
||||||
|
|
||||||
def check_accuracy_tiles():
|
def check_accuracy_tiles():
|
||||||
@ -59,13 +95,12 @@ def check_accuracy_tiles():
|
|||||||
|
|
||||||
|
|
||||||
def what_is_it(img_path, show_img=False):
|
def what_is_it(img_path, show_img=False):
|
||||||
image = Image.open(img_path).convert('RGB')
|
image = read_image(img_path, mode=ImageReadMode.RGB)
|
||||||
if show_img:
|
if show_img:
|
||||||
plt.imshow(image)
|
plt.imshow(plt.imread(img_path))
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
image = SETUP_PHOTOS(image).unsqueeze(0)
|
image = SETUP_PHOTOS(image).unsqueeze(0)
|
||||||
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_20/checkpoints/epoch=3-step=324.ckpt')
|
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_3/checkpoints/epoch=8-step=810.ckpt')
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
model.eval()
|
model.eval()
|
||||||
@ -73,53 +108,18 @@ def what_is_it(img_path, show_img=False):
|
|||||||
return ID_TO_CLASS[idx]
|
return ID_TO_CLASS[idx]
|
||||||
|
|
||||||
|
|
||||||
def check_accuracy(tset):
|
CNN = NeuralNetwork()
|
||||||
model = NeuralNetwork.load_from_checkpoint('./lightning_logs/version_23/checkpoints/epoch=3-step=324.ckpt')
|
|
||||||
num_correct = 0
|
|
||||||
num_samples = 0
|
|
||||||
model = model.to(DEVICE)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
for photo, label in tset:
|
|
||||||
photo = photo.to(DEVICE)
|
|
||||||
label = label.to(DEVICE)
|
|
||||||
|
|
||||||
scores = model(photo)
|
|
||||||
predictions = scores.argmax(dim=1)
|
|
||||||
num_correct += (predictions == label).sum()
|
|
||||||
num_samples += predictions.size(0)
|
|
||||||
|
|
||||||
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}%')
|
|
||||||
|
|
||||||
|
|
||||||
def check_accuracy_data():
|
trainer = pl.Trainer(accelerator='gpu', devices=1, auto_scale_batch_size=True, callbacks=[EarlyStopping('val_loss')], max_epochs=NUM_EPOCHS)
|
||||||
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
|
||||||
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
|
||||||
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
|
||||||
test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
|
|
||||||
|
|
||||||
print("Accuracy of train_set:")
|
|
||||||
check_accuracy(train_loader)
|
|
||||||
print("Accuracy of test_set:")
|
|
||||||
check_accuracy(test_loader)
|
|
||||||
|
|
||||||
#CNN = NeuralNetwork()
|
|
||||||
#common.helpers.createCSV()
|
|
||||||
|
|
||||||
#trainer = pl.Trainer(accelerator='gpu', callbacks=EarlyStopping('val_loss'), devices=1, max_epochs=NUM_EPOCHS)
|
|
||||||
#trainer = pl.Trainer(accelerator='gpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
|
#trainer = pl.Trainer(accelerator='gpu', devices=1, auto_lr_find=True, max_epochs=NUM_EPOCHS)
|
||||||
|
|
||||||
#trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
#testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
testset = WaterSandTreeGrass('./data/test_csv_file.csv', transform=SETUP_PHOTOS)
|
||||||
#train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
|
||||||
#test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
|
test_loader = DataLoader(testset, batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
#trainer.fit(CNN, train_loader, test_loader)
|
#trainer.fit(CNN, train_loader, test_loader)
|
||||||
#trainer.tune(CNN, train_loader, test_loader)
|
#trainer.tune(CNN, train_loader, test_loader)
|
||||||
|
check_accuracy_tiles()
|
||||||
|
print(what_is_it('../../resources/textures/sand.png', True))
|
||||||
#print(what_is_it('../../resources/textures/grass2.png', True))
|
|
||||||
|
|
||||||
#check_accuracy_data()
|
|
||||||
|
|
||||||
#check_accuracy_tiles()
|
|
||||||
|
@ -3,7 +3,6 @@ from torch.utils.data import Dataset
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from torchvision.io import read_image, ImageReadMode
|
from torchvision.io import read_image, ImageReadMode
|
||||||
from common.helpers import createCSV
|
from common.helpers import createCSV
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
|
|
||||||
class WaterSandTreeGrass(Dataset):
|
class WaterSandTreeGrass(Dataset):
|
||||||
@ -16,8 +15,7 @@ class WaterSandTreeGrass(Dataset):
|
|||||||
return len(self.img_labels)
|
return len(self.img_labels)
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
image = Image.open(self.img_labels.iloc[idx, 0]).convert('RGB')
|
image = read_image(self.img_labels.iloc[idx, 0], mode=ImageReadMode.RGB)
|
||||||
|
|
||||||
label = torch.tensor(int(self.img_labels.iloc[idx, 1]))
|
label = torch.tensor(int(self.img_labels.iloc[idx, 1]))
|
||||||
|
|
||||||
if self.transform:
|
if self.transform:
|
||||||
|
@ -6,7 +6,7 @@ GAME_TITLE = 'WMICraft'
|
|||||||
WINDOW_HEIGHT = 800
|
WINDOW_HEIGHT = 800
|
||||||
WINDOW_WIDTH = 1360
|
WINDOW_WIDTH = 1360
|
||||||
FPS_COUNT = 60
|
FPS_COUNT = 60
|
||||||
TURN_INTERVAL = 200
|
TURN_INTERVAL = 300
|
||||||
|
|
||||||
GRID_CELL_PADDING = 5
|
GRID_CELL_PADDING = 5
|
||||||
GRID_CELL_SIZE = 36
|
GRID_CELL_SIZE = 36
|
||||||
@ -77,17 +77,19 @@ BAR_HEIGHT_MULTIPLIER = 0.1
|
|||||||
|
|
||||||
|
|
||||||
#NEURAL_NETWORK
|
#NEURAL_NETWORK
|
||||||
LEARNING_RATE = 0.000630957344480193
|
LEARNING_RATE = 0.13182567385564073
|
||||||
BATCH_SIZE = 64
|
BATCH_SIZE = 64
|
||||||
NUM_EPOCHS = 9
|
NUM_EPOCHS = 50
|
||||||
|
|
||||||
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||||
print("Using ", DEVICE)
|
print("Using ", DEVICE)
|
||||||
CLASSES = ['grass', 'sand', 'tree', 'water']
|
CLASSES = ['grass', 'sand', 'tree', 'water']
|
||||||
|
|
||||||
SETUP_PHOTOS = transforms.Compose([
|
SETUP_PHOTOS = transforms.Compose([
|
||||||
|
transforms.Resize(36),
|
||||||
|
transforms.CenterCrop(36),
|
||||||
|
transforms.ToPILImage(),
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
transforms.Resize((36, 36)),
|
|
||||||
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
||||||
])
|
])
|
||||||
|
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
from typing import Tuple, List
|
from typing import Tuple, List
|
||||||
|
|
||||||
import pygame
|
import pygame
|
||||||
|
|
||||||
from algorithms.genetic.const import MAP_ALIASES
|
|
||||||
from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE, COLUMNS, ROWS, CLASSES, CLASS_TO_ID
|
from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE, COLUMNS, ROWS, CLASSES, CLASS_TO_ID
|
||||||
import csv
|
import csv
|
||||||
import os
|
import os
|
||||||
@ -101,7 +99,7 @@ def castle_neighbors(map, castle_bottom_right_row, castle_bottom_right_col):
|
|||||||
return neighbors
|
return neighbors
|
||||||
|
|
||||||
|
|
||||||
def find_neighbours(grid: List[List[int]], col: int, row: int) -> List[Tuple[int, int]]:
|
def find_neighbours(grid: List[List[str]], col: int, row: int) -> List[Tuple[int, int]]:
|
||||||
dr = [-1, 1, 0, 0]
|
dr = [-1, 1, 0, 0]
|
||||||
dc = [0, 0, -1, 1]
|
dc = [0, 0, -1, 1]
|
||||||
|
|
||||||
@ -113,7 +111,7 @@ def find_neighbours(grid: List[List[int]], col: int, row: int) -> List[Tuple[int
|
|||||||
|
|
||||||
if rr < 0 or cc < 0: continue
|
if rr < 0 or cc < 0: continue
|
||||||
if rr >= ROWS or cc >= COLUMNS: continue
|
if rr >= ROWS or cc >= COLUMNS: continue
|
||||||
if grid[rr][cc] not in [MAP_ALIASES.get("GRASS"), MAP_ALIASES.get("SAND"), '.']: continue
|
if grid[rr][cc] not in ['g', 's', '.']: continue
|
||||||
neighbours.append((rr, cc))
|
neighbours.append((rr, cc))
|
||||||
|
|
||||||
return neighbours
|
return neighbours
|
||||||
|
@ -299,4 +299,4 @@ tower_dist;mob1_dist;mob2_dist;opp1_dist;opp2_dist;opp3_dist;opp4_dist;agent_hp;
|
|||||||
29;25;30;19;35;38;33;6;68;5;1;0;5;11;6;mob1
|
29;25;30;19;35;38;33;6;68;5;1;0;5;11;6;mob1
|
||||||
23;43;41;25;27;26;19;7;12;8;3;4;10;11;9;tower
|
23;43;41;25;27;26;19;7;12;8;3;4;10;11;9;tower
|
||||||
7;9;18;31;36;21;16;4;23;8;4;9;8;11;5;tower
|
7;9;18;31;36;21;16;4;23;8;4;9;8;11;5;tower
|
||||||
35;21;39;36;36;37;33;10;41;9;4;1;0;7;0;mob1
|
35;21;39;36;36;37;33;10;41;9;4;1;0;7;0;mob1
|
|
@ -26,7 +26,7 @@ def parse_idx_of_opp_or_monster(s: str) -> int:
|
|||||||
|
|
||||||
class DecisionTree:
|
class DecisionTree:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
data_frame = pd.read_csv('learning/dataset_tree_1000.csv', delimiter=';')
|
data_frame = pd.read_csv('learning/dataset_tree.csv', delimiter=';')
|
||||||
unlabeled_goals = data_frame['goal']
|
unlabeled_goals = data_frame['goal']
|
||||||
self.goals_label_encoder = LabelEncoder()
|
self.goals_label_encoder = LabelEncoder()
|
||||||
self.goals = self.goals_label_encoder.fit_transform(unlabeled_goals)
|
self.goals = self.goals_label_encoder.fit_transform(unlabeled_goals)
|
||||||
@ -34,7 +34,7 @@ class DecisionTree:
|
|||||||
self.model = DecisionTreeClassifier(criterion='entropy')
|
self.model = DecisionTreeClassifier(criterion='entropy')
|
||||||
self.model.fit(self.train_set.values, self.goals)
|
self.model.fit(self.train_set.values, self.goals)
|
||||||
|
|
||||||
def predict_move(self, grid: List[List[int]], current_knight: Knight, castle: Castle, monsters: List[Monster],
|
def predict_move(self, grid: List[List[str]], current_knight: Knight, castle: Castle, monsters: List[Monster],
|
||||||
opponents: List[Knight]) -> \
|
opponents: List[Knight]) -> \
|
||||||
List[Tuple[int, int]]:
|
List[Tuple[int, int]]:
|
||||||
distance_to_castle = manhattan_distance(current_knight.position, castle.position)
|
distance_to_castle = manhattan_distance(current_knight.position, castle.position)
|
||||||
@ -42,15 +42,14 @@ class DecisionTree:
|
|||||||
monsters_parsed = []
|
monsters_parsed = []
|
||||||
for monster in monsters:
|
for monster in monsters:
|
||||||
monsters_parsed.append((manhattan_distance(current_knight.position, monster.position), parse_hp(
|
monsters_parsed.append((manhattan_distance(current_knight.position, monster.position), parse_hp(
|
||||||
monster.health_bar.current_hp)))
|
monster.current_hp)))
|
||||||
|
|
||||||
opponents_parsed = []
|
opponents_parsed = []
|
||||||
for opponent in opponents:
|
for opponent in opponents:
|
||||||
opponents_parsed.append(
|
opponents_parsed.append(
|
||||||
(manhattan_distance(current_knight.position, opponent.position),
|
(manhattan_distance(current_knight.position, opponent.position), parse_hp(opponent.health_bar.current_hp)))
|
||||||
parse_hp(opponent.health_bar.current_hp)))
|
|
||||||
|
|
||||||
prediction = self.get_prediction(tower_dist=distance_to_castle, tower_hp=castle.health_bar.current_hp,
|
prediction = self.get_prediction(tower_dist=distance_to_castle, tower_hp=castle.current_hp,
|
||||||
mob1_dist=monsters_parsed[0][0], mob1_hp=monsters_parsed[0][1],
|
mob1_dist=monsters_parsed[0][0], mob1_hp=monsters_parsed[0][1],
|
||||||
mob2_dist=monsters_parsed[1][0], mob2_hp=monsters_parsed[1][1],
|
mob2_dist=monsters_parsed[1][0], mob2_hp=monsters_parsed[1][1],
|
||||||
opp1_dist=opponents_parsed[0][0], opp1_hp=opponents_parsed[0][1],
|
opp1_dist=opponents_parsed[0][0], opp1_hp=opponents_parsed[0][1],
|
||||||
@ -58,7 +57,7 @@ class DecisionTree:
|
|||||||
opp3_dist=opponents_parsed[2][0], opp3_hp=opponents_parsed[2][1],
|
opp3_dist=opponents_parsed[2][0], opp3_hp=opponents_parsed[2][1],
|
||||||
opp4_dist=opponents_parsed[3][0], opp4_hp=opponents_parsed[3][1],
|
opp4_dist=opponents_parsed[3][0], opp4_hp=opponents_parsed[3][1],
|
||||||
agent_hp=current_knight.health_bar.current_hp)
|
agent_hp=current_knight.health_bar.current_hp)
|
||||||
print(f'Prediction = {prediction}')
|
print(prediction)
|
||||||
if prediction == 'tower': # castle...
|
if prediction == 'tower': # castle...
|
||||||
return castle_neighbors(grid, castle_bottom_right_row=castle.position[0],
|
return castle_neighbors(grid, castle_bottom_right_row=castle.position[0],
|
||||||
castle_bottom_right_col=castle.position[1])
|
castle_bottom_right_col=castle.position[1])
|
||||||
|
@ -45,7 +45,6 @@ class Game:
|
|||||||
# create level
|
# create level
|
||||||
level.create_map()
|
level.create_map()
|
||||||
stats = Stats(self.screen, level.list_knights_blue, level.list_knights_red)
|
stats = Stats(self.screen, level.list_knights_blue, level.list_knights_red)
|
||||||
level.setup_stats(stats)
|
|
||||||
|
|
||||||
print_numbers_flag = False
|
print_numbers_flag = False
|
||||||
running = True
|
running = True
|
||||||
|
@ -10,7 +10,7 @@ class KnightsQueue:
|
|||||||
def dequeue_knight(self):
|
def dequeue_knight(self):
|
||||||
if self.both_teams_alive():
|
if self.both_teams_alive():
|
||||||
knight = self.queues[self.team_idx_turn].popleft()
|
knight = self.queues[self.team_idx_turn].popleft()
|
||||||
if knight.health_bar.current_hp <= 0:
|
if knight.max_hp <= 0:
|
||||||
return self.dequeue_knight()
|
return self.dequeue_knight()
|
||||||
else:
|
else:
|
||||||
self.queues[self.team_idx_turn].append(knight)
|
self.queues[self.team_idx_turn].append(knight)
|
||||||
|
183
logic/level.py
@ -3,11 +3,10 @@ import random
|
|||||||
import pygame
|
import pygame
|
||||||
|
|
||||||
from algorithms.a_star import a_star, State, TURN_RIGHT, TURN_LEFT, FORWARD
|
from algorithms.a_star import a_star, State, TURN_RIGHT, TURN_LEFT, FORWARD
|
||||||
from algorithms.genetic.const import MAP_ALIASES
|
|
||||||
from algorithms.genetic.map_importer_exporter import import_random_map
|
|
||||||
from common.constants import *
|
from common.constants import *
|
||||||
from learning.decision_tree import DecisionTree
|
from learning.decision_tree import DecisionTree
|
||||||
from logic.knights_queue import KnightsQueue
|
from logic.knights_queue import KnightsQueue
|
||||||
|
from logic.spawner import Spawner
|
||||||
from models.castle import Castle
|
from models.castle import Castle
|
||||||
from models.knight import Knight
|
from models.knight import Knight
|
||||||
from models.monster import Monster
|
from models.monster import Monster
|
||||||
@ -22,7 +21,7 @@ class Level:
|
|||||||
# sprite group setup
|
# sprite group setup
|
||||||
self.sprites = pygame.sprite.LayeredUpdates()
|
self.sprites = pygame.sprite.LayeredUpdates()
|
||||||
|
|
||||||
self.map = []
|
self.map = [['g' for _ in range(COLUMNS)] for y in range(ROWS)]
|
||||||
|
|
||||||
self.list_knights_blue = []
|
self.list_knights_blue = []
|
||||||
self.list_knights_red = []
|
self.list_knights_red = []
|
||||||
@ -31,21 +30,28 @@ class Level:
|
|||||||
|
|
||||||
self.knights_queue = None
|
self.knights_queue = None
|
||||||
|
|
||||||
self.stats = None
|
|
||||||
|
|
||||||
def setup_stats(self, stats):
|
|
||||||
self.stats = stats
|
|
||||||
|
|
||||||
def add_points(self, team, points_to_add):
|
|
||||||
if self.stats is not None:
|
|
||||||
self.stats.add_points(team, points_to_add)
|
|
||||||
|
|
||||||
def create_map(self):
|
def create_map(self):
|
||||||
self.map = import_random_map()
|
self.generate_map()
|
||||||
self.setup_base_tiles()
|
self.setup_base_tiles()
|
||||||
self.setup_objects()
|
self.setup_objects()
|
||||||
self.knights_queue = KnightsQueue(self.list_knights_blue, self.list_knights_red)
|
self.knights_queue = KnightsQueue(self.list_knights_blue, self.list_knights_red)
|
||||||
|
|
||||||
|
def generate_map(self):
|
||||||
|
spawner = Spawner(self.map)
|
||||||
|
spawner.spawn_where_possible(['w' for _ in range(NBR_OF_WATER)])
|
||||||
|
spawner.spawn_where_possible(['t' for _ in range(NBR_OF_TREES)])
|
||||||
|
spawner.spawn_where_possible(['s' for _ in range(NBR_OF_SANDS)])
|
||||||
|
|
||||||
|
spawner.spawn_in_area(['k_b' for _ in range(4)], LEFT_KNIGHTS_SPAWN_FIRST_ROW, LEFT_KNIGHTS_SPAWN_FIRST_COL,
|
||||||
|
KNIGHTS_SPAWN_WIDTH, KNIGHTS_SPAWN_HEIGHT)
|
||||||
|
spawner.spawn_in_area(['k_r' for _ in range(4)], RIGHT_KNIGHTS_SPAWN_FIRST_ROW, RIGHT_KNIGHTS_SPAWN_FIRST_COL,
|
||||||
|
KNIGHTS_SPAWN_WIDTH, KNIGHTS_SPAWN_HEIGHT)
|
||||||
|
|
||||||
|
spawner.spawn_in_area(['c'], CASTLE_SPAWN_FIRST_ROW, CASTLE_SPAWN_FIRST_COL, CASTLE_SPAWN_WIDTH,
|
||||||
|
CASTLE_SPAWN_HEIGHT, 2)
|
||||||
|
|
||||||
|
spawner.spawn_where_possible(['m' for _ in range(NBR_OF_MONSTERS)])
|
||||||
|
|
||||||
def setup_base_tiles(self):
|
def setup_base_tiles(self):
|
||||||
textures = []
|
textures = []
|
||||||
for texture_path in TILES:
|
for texture_path in TILES:
|
||||||
@ -57,15 +63,15 @@ class Level:
|
|||||||
for col_index, col in enumerate(row):
|
for col_index, col in enumerate(row):
|
||||||
|
|
||||||
# add base tiles, e.g. water, tree, grass
|
# add base tiles, e.g. water, tree, grass
|
||||||
if col == MAP_ALIASES.get('WATER'):
|
if col == "w":
|
||||||
texture_index = 5
|
texture_index = 5
|
||||||
texture_surface = textures[texture_index][1]
|
texture_surface = textures[texture_index][1]
|
||||||
Tile((col_index, row_index), texture_surface, self.sprites, 'w')
|
Tile((col_index, row_index), texture_surface, self.sprites, 'w')
|
||||||
elif col == MAP_ALIASES.get('TREE'):
|
elif col == "t":
|
||||||
texture_index = 6
|
texture_index = 6
|
||||||
texture_surface = textures[texture_index][1]
|
texture_surface = textures[texture_index][1]
|
||||||
Tile((col_index, row_index), texture_surface, self.sprites, 't')
|
Tile((col_index, row_index), texture_surface, self.sprites, 't')
|
||||||
elif col == MAP_ALIASES.get('SAND'):
|
elif col == "s":
|
||||||
texture_index = 4
|
texture_index = 4
|
||||||
texture_surface = textures[texture_index][1]
|
texture_surface = textures[texture_index][1]
|
||||||
Tile((col_index, row_index), texture_surface, self.sprites)
|
Tile((col_index, row_index), texture_surface, self.sprites)
|
||||||
@ -82,148 +88,37 @@ class Level:
|
|||||||
for col_index, col in enumerate(row):
|
for col_index, col in enumerate(row):
|
||||||
|
|
||||||
# add objects, e.g. knights, monsters, castle
|
# add objects, e.g. knights, monsters, castle
|
||||||
if col == MAP_ALIASES.get('KNIGHT_BLUE'):
|
if col == "k_b":
|
||||||
knight = Knight(self.screen, (col_index, row_index), self.sprites, "blue")
|
knight = Knight(self.screen, (col_index, row_index), self.sprites, "blue")
|
||||||
self.map[row_index][col_index] = knight
|
self.map[row_index][col_index] = knight
|
||||||
self.list_knights_blue.append(knight)
|
self.list_knights_blue.append(knight)
|
||||||
elif col == MAP_ALIASES.get('KNIGHT_RED'):
|
elif col == "k_r":
|
||||||
knight = Knight(self.screen, (col_index, row_index), self.sprites, "red")
|
knight = Knight(self.screen, (col_index, row_index), self.sprites, "red")
|
||||||
self.map[row_index][col_index] = knight
|
self.map[row_index][col_index] = knight
|
||||||
self.list_knights_red.append(knight)
|
self.list_knights_red.append(knight)
|
||||||
elif col == MAP_ALIASES.get('MONSTER'):
|
elif col == "m":
|
||||||
monster = Monster(self.screen, (col_index, row_index), self.sprites)
|
monster = Monster(self.screen, (col_index, row_index), self.sprites)
|
||||||
self.map[row_index][col_index] = monster
|
self.map[row_index][col_index] = monster
|
||||||
self.list_monsters.append(monster)
|
self.list_monsters.append(monster)
|
||||||
elif col == MAP_ALIASES.get('CASTLE'):
|
elif col == "c":
|
||||||
castle_count += 1
|
castle_count += 1
|
||||||
if castle_count == 4:
|
if castle_count == 4:
|
||||||
castle = Castle(self.screen, (col_index, row_index), self.sprites)
|
castle = Castle(self.screen, (col_index, row_index), self.sprites)
|
||||||
self.map[row_index][col_index] = castle
|
self.map[row_index][col_index] = castle
|
||||||
self.list_castles.append(castle)
|
self.list_castles.append(castle)
|
||||||
|
|
||||||
#def attack_knight(self, knights_list, positions, current_knight):
|
|
||||||
# op_pos_1 = current_knight.position[0] - 1, current_knight.position[1]
|
|
||||||
# positions.append(op_pos_1)
|
|
||||||
# op_pos_2 = current_knight.position[0], current_knight.position[1] - 1
|
|
||||||
# positions.append(op_pos_2)
|
|
||||||
# op_pos_3 = current_knight.position[0] + 1, current_knight.position[1]
|
|
||||||
# positions.append(op_pos_3)
|
|
||||||
# op_pos_4 = current_knight.position[0], current_knight.position[1] + 1
|
|
||||||
# positions.append(op_pos_4)
|
|
||||||
# for some_knight in knights_list:
|
|
||||||
# for some_position in positions:
|
|
||||||
# if (some_knight.position == some_position and some_knight.team != current_knight.team):
|
|
||||||
# some_knight.health_bar.take_dmg(current_knight.attack)
|
|
||||||
# if some_knight.health_bar.current_hp == 0:
|
|
||||||
# some_knight.kill()
|
|
||||||
# positions.clear()
|
|
||||||
|
|
||||||
def attack_knight_left(self, knights_list, current_knight):
|
|
||||||
position_left = current_knight.position[0] - 1, current_knight.position[1]
|
|
||||||
for some_knight in knights_list:
|
|
||||||
if (some_knight.position == position_left and some_knight.team != current_knight.team):
|
|
||||||
some_knight.health_bar.take_dmg(current_knight.attack)
|
|
||||||
if some_knight.health_bar.current_hp <= 0:
|
|
||||||
some_knight.kill()
|
|
||||||
self.add_points(current_knight.team, 5)
|
|
||||||
for monster in self.list_monsters:
|
|
||||||
if monster.position == position_left:
|
|
||||||
monster.health_bar.take_dmg(current_knight.attack)
|
|
||||||
if monster.health_bar.current_hp <= 0:
|
|
||||||
monster.kill()
|
|
||||||
self.add_points(current_knight.team, monster.points)
|
|
||||||
else:
|
|
||||||
current_knight.health_bar.take_dmg(monster.attack)
|
|
||||||
if current_knight.health_bar.current_hp <= 0:
|
|
||||||
current_knight.kill()
|
|
||||||
for castle in self.list_castles:
|
|
||||||
if castle.position == position_left:
|
|
||||||
castle.health_bar.take_dmg(current_knight.attack)
|
|
||||||
|
|
||||||
|
|
||||||
def attack_knight_right(self, knights_list, current_knight):
|
|
||||||
position_right = current_knight.position[0] + 1, current_knight.position[1]
|
|
||||||
for some_knight in knights_list:
|
|
||||||
if (some_knight.position == position_right and some_knight.team != current_knight.team):
|
|
||||||
some_knight.health_bar.take_dmg(current_knight.attack)
|
|
||||||
if some_knight.health_bar.current_hp == 0:
|
|
||||||
some_knight.kill()
|
|
||||||
self.add_points(current_knight.team, 5)
|
|
||||||
for monster in self.list_monsters:
|
|
||||||
if monster.position == position_right:
|
|
||||||
monster.health_bar.take_dmg(current_knight.attack)
|
|
||||||
if monster.health_bar.current_hp <= 0:
|
|
||||||
monster.kill()
|
|
||||||
self.add_points(current_knight.team, monster.points)
|
|
||||||
else:
|
|
||||||
current_knight.health_bar.take_dmg(monster.attack)
|
|
||||||
if current_knight.health_bar.current_hp <= 0:
|
|
||||||
current_knight.kill()
|
|
||||||
for castle in self.list_castles:
|
|
||||||
if castle.position == position_right:
|
|
||||||
castle.health_bar.take_dmg(current_knight.attack)
|
|
||||||
|
|
||||||
def attack_knight_up(self, knights_list, current_knight):
|
|
||||||
position_up = current_knight.position[0], current_knight.position[1] - 1
|
|
||||||
for some_knight in knights_list:
|
|
||||||
if (some_knight.position == position_up and some_knight.team != current_knight.team):
|
|
||||||
some_knight.health_bar.take_dmg(current_knight.attack)
|
|
||||||
if some_knight.health_bar.current_hp == 0:
|
|
||||||
some_knight.kill()
|
|
||||||
self.add_points(current_knight.team, 5)
|
|
||||||
for monster in self.list_monsters:
|
|
||||||
if monster.position == position_up:
|
|
||||||
monster.health_bar.take_dmg(current_knight.attack)
|
|
||||||
if monster.health_bar.current_hp <= 0:
|
|
||||||
monster.kill()
|
|
||||||
self.add_points(current_knight.team, monster.points)
|
|
||||||
else:
|
|
||||||
current_knight.health_bar.take_dmg(monster.attack)
|
|
||||||
if current_knight.health_bar.current_hp <= 0:
|
|
||||||
current_knight.kill()
|
|
||||||
for castle in self.list_castles:
|
|
||||||
if castle.position == position_up:
|
|
||||||
castle.health_bar.take_dmg(current_knight.attack)
|
|
||||||
|
|
||||||
def attack_knight_down(self, knights_list, current_knight):
|
|
||||||
position_down = current_knight.position[0], current_knight.position[1] + 1
|
|
||||||
for some_knight in knights_list:
|
|
||||||
if (some_knight.position == position_down and some_knight.team != current_knight.team):
|
|
||||||
some_knight.health_bar.take_dmg(current_knight.attack)
|
|
||||||
if some_knight.health_bar.current_hp == 0:
|
|
||||||
some_knight.kill()
|
|
||||||
self.add_points(current_knight.team, 5)
|
|
||||||
for monster in self.list_monsters:
|
|
||||||
if monster.position == position_down:
|
|
||||||
monster.health_bar.take_dmg(current_knight.attack)
|
|
||||||
if monster.health_bar.current_hp <= 0:
|
|
||||||
monster.kill()
|
|
||||||
self.add_points(current_knight.team, monster.points)
|
|
||||||
else:
|
|
||||||
current_knight.health_bar.take_dmg(monster.attack)
|
|
||||||
if current_knight.health_bar.current_hp <= 0:
|
|
||||||
current_knight.kill()
|
|
||||||
for castle in self.list_castles:
|
|
||||||
if castle.position == position_down:
|
|
||||||
castle.health_bar.take_dmg(current_knight.attack)
|
|
||||||
|
|
||||||
def handle_turn(self):
|
def handle_turn(self):
|
||||||
|
print("next turn")
|
||||||
current_knight = self.knights_queue.dequeue_knight()
|
current_knight = self.knights_queue.dequeue_knight()
|
||||||
knights_list = self.list_knights_red + self.list_knights_blue
|
|
||||||
print("next turn " + current_knight.team)
|
|
||||||
knight_pos_x = current_knight.position[0]
|
knight_pos_x = current_knight.position[0]
|
||||||
knight_pos_y = current_knight.position[1]
|
knight_pos_y = current_knight.position[1]
|
||||||
positions = []
|
|
||||||
|
|
||||||
goal_list = self.decision_tree.predict_move(grid=self.map, current_knight=current_knight,
|
goal_list = self.decision_tree.predict_move(grid=self.map, current_knight=current_knight,
|
||||||
monsters=self.list_monsters,
|
monsters=self.list_monsters,
|
||||||
opponents=self.list_knights_blue
|
opponents=self.list_knights_red
|
||||||
if current_knight.team_alias() == 'k_r' else self.list_knights_red,
|
if current_knight.team_alias == 'k_r' else self.list_knights_blue,
|
||||||
castle=self.list_castles[0])
|
castle=self.list_castles[0])
|
||||||
|
|
||||||
if (len(self.list_knights_blue) == 0 or len(self.list_knights_red) == 0):
|
|
||||||
pygame.quit()
|
|
||||||
|
|
||||||
if len(goal_list) == 0:
|
if len(goal_list) == 0:
|
||||||
return
|
return
|
||||||
|
|
||||||
@ -236,19 +131,6 @@ class Level:
|
|||||||
return
|
return
|
||||||
|
|
||||||
next_action = action_list.pop(0)
|
next_action = action_list.pop(0)
|
||||||
|
|
||||||
#if current_knight.health_bar.current_hp != 0:
|
|
||||||
#self.attack_knight(knights_list, positions, current_knight)
|
|
||||||
|
|
||||||
if current_knight.direction.name == UP:
|
|
||||||
self.attack_knight_up(knights_list, current_knight)
|
|
||||||
elif current_knight.direction.name == DOWN:
|
|
||||||
self.attack_knight_down(knights_list, current_knight)
|
|
||||||
elif current_knight.direction.name == RIGHT:
|
|
||||||
self.attack_knight_right(knights_list, current_knight)
|
|
||||||
elif current_knight.direction.name == LEFT:
|
|
||||||
self.attack_knight_left(knights_list, current_knight)
|
|
||||||
|
|
||||||
if next_action == TURN_LEFT:
|
if next_action == TURN_LEFT:
|
||||||
self.logs.enqueue_log(f'AI {current_knight.team}: Obrót w lewo.')
|
self.logs.enqueue_log(f'AI {current_knight.team}: Obrót w lewo.')
|
||||||
current_knight.rotate_left()
|
current_knight.rotate_left()
|
||||||
@ -257,9 +139,9 @@ class Level:
|
|||||||
current_knight.rotate_right()
|
current_knight.rotate_right()
|
||||||
elif next_action == FORWARD:
|
elif next_action == FORWARD:
|
||||||
current_knight.step_forward()
|
current_knight.step_forward()
|
||||||
self.map[knight_pos_y][knight_pos_x] = MAP_ALIASES.get("GRASS")
|
self.map[knight_pos_y][knight_pos_x] = 'g'
|
||||||
|
|
||||||
# update knight on map
|
# update knight on map
|
||||||
if current_knight.direction.name == UP:
|
if current_knight.direction.name == UP:
|
||||||
self.logs.enqueue_log(f'AI {current_knight.team}: Ruch do góry.')
|
self.logs.enqueue_log(f'AI {current_knight.team}: Ruch do góry.')
|
||||||
self.map[knight_pos_y - 1][knight_pos_x] = current_knight.team_alias()
|
self.map[knight_pos_y - 1][knight_pos_x] = current_knight.team_alias()
|
||||||
@ -281,6 +163,3 @@ class Level:
|
|||||||
# update and draw the game
|
# update and draw the game
|
||||||
self.sprites.draw(self.screen)
|
self.sprites.draw(self.screen)
|
||||||
self.sprites.update()
|
self.sprites.update()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -16,7 +16,8 @@ class Castle(pygame.sprite.Sprite):
|
|||||||
position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
|
position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
|
||||||
self.rect = self.image.get_rect(center=position_in_px)
|
self.rect = self.image.get_rect(center=position_in_px)
|
||||||
self.max_hp = 80
|
self.max_hp = 80
|
||||||
self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
|
self.current_hp = random.randint(1, self.max_hp)
|
||||||
|
self.health_bar = HealthBar(screen, self.rect, current_hp=self.current_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
|
||||||
|
|
||||||
def update(self):
|
def update(self):
|
||||||
self.health_bar.update()
|
self.health_bar.update()
|
||||||
|
@ -7,11 +7,8 @@ from common.helpers import parse_cord
|
|||||||
from logic.health_bar import HealthBar
|
from logic.health_bar import HealthBar
|
||||||
|
|
||||||
|
|
||||||
def load_knight_textures(team):
|
def load_knight_textures():
|
||||||
if team == "blue":
|
random_index = random.randint(1, 4)
|
||||||
random_index = 3
|
|
||||||
else:
|
|
||||||
random_index = 4
|
|
||||||
states = [
|
states = [
|
||||||
pygame.image.load(f'resources/textures/knight_{random_index}_up.png').convert_alpha(), # up = 0
|
pygame.image.load(f'resources/textures/knight_{random_index}_up.png').convert_alpha(), # up = 0
|
||||||
pygame.image.load(f'resources/textures/knight_{random_index}_right.png').convert_alpha(), # right = 1
|
pygame.image.load(f'resources/textures/knight_{random_index}_right.png').convert_alpha(), # right = 1
|
||||||
@ -27,7 +24,7 @@ class Knight(pygame.sprite.Sprite):
|
|||||||
super().__init__(group)
|
super().__init__(group)
|
||||||
|
|
||||||
self.direction = Direction.DOWN
|
self.direction = Direction.DOWN
|
||||||
self.states = load_knight_textures(team)
|
self.states = load_knight_textures()
|
||||||
|
|
||||||
self.image = self.states[self.direction.value]
|
self.image = self.states[self.direction.value]
|
||||||
self.position = position
|
self.position = position
|
||||||
@ -36,11 +33,11 @@ class Knight(pygame.sprite.Sprite):
|
|||||||
self.rect = self.image.get_rect(topleft=position_in_px)
|
self.rect = self.image.get_rect(topleft=position_in_px)
|
||||||
|
|
||||||
self.team = team
|
self.team = team
|
||||||
self.max_hp = random.randint(9, 13)
|
self.max_hp = random.randint(7, 12)
|
||||||
self.attack = random.randint(2, 4)
|
self.attack = random.randint(4, 7)
|
||||||
self.defense = random.randint(1, 4)
|
self.defense = random.randint(1, 4)
|
||||||
self.points = 1
|
self.points = 1
|
||||||
self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
|
self.health_bar = HealthBar(screen, self.rect, current_hp=random.randint(1, self.max_hp), max_hp=self.max_hp, calculate_xy=True, calculate_size=True)
|
||||||
|
|
||||||
def rotate_left(self):
|
def rotate_left(self):
|
||||||
self.direction = self.direction.left()
|
self.direction = self.direction.left()
|
||||||
|
@ -22,13 +22,14 @@ class Monster(pygame.sprite.Sprite):
|
|||||||
position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
|
position_in_px = (parse_cord(position[0]), parse_cord(position[1]))
|
||||||
self.rect = self.image.get_rect(topleft=position_in_px)
|
self.rect = self.image.get_rect(topleft=position_in_px)
|
||||||
self.position = position
|
self.position = position
|
||||||
self.max_hp = random.randrange(15, 20)
|
self.max_hp = random.randrange(15, 25)
|
||||||
self.health_bar = HealthBar(screen, self.rect, current_hp=self.max_hp, max_hp=self.max_hp,
|
self.current_hp = random.randint(1, self.max_hp)
|
||||||
|
self.health_bar = HealthBar(screen, self.rect, current_hp=self.current_hp, max_hp=self.max_hp,
|
||||||
calculate_xy=True, calculate_size=True)
|
calculate_xy=True, calculate_size=True)
|
||||||
self.attack = random.randrange(4, 6)
|
self.attack = random.randrange(2, 10)
|
||||||
if self.image == monster_images[0]:
|
if self.image == monster_images[0]:
|
||||||
self.max_hp = 20
|
self.max_hp = 20
|
||||||
self.attack = 6
|
self.attack = 9
|
||||||
self.points = 10
|
self.points = 10
|
||||||
elif self.image == monster_images[1]:
|
elif self.image == monster_images[1]:
|
||||||
self.max_hp = 15
|
self.max_hp = 15
|
||||||
|
BIN
requirements.txt
@ -1 +0,0 @@
|
|||||||
{"map": [[0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 3, 3, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3], [0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3], [0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 3], [0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2], [0, 0, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 0, 2, 2, 2, 0, 0, 0, 0, 0, 7, 2, 0], [0, 0, 0, 6, 0, 0, 0, 2, 2, 2, 0, 5, 5, 0, 2, 0, 0, 2, 2, 2, 2, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 5, 5, 0, 2, 0, 0, 0, 0, 2, 2, 1, 1, 7], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 1, 7], [6, 0, 0, 6, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 1, 1, 0], [6, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 1, 1, 7, 0], [0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 3, 1, 1, 1, 0], [0, 3, 3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 1, 0, 0], [0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
|
|
@ -1 +0,0 @@
|
|||||||
{"map": [[0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0], [0, 3, 3, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 3, 3, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 2, 2, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 6, 3, 3, 0, 0, 0, 0, 0, 3, 0, 4, 0, 3, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 7, 7, 0, 0], [6, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 3, 7, 0, 0, 0], [0, 0, 6, 6, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0], [0, 2, 2, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0], [2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
|
|
@ -1 +0,0 @@
|
|||||||
{"map": [[0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 3], [0, 0, 0, 0, 2, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 0], [0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 2, 0], [0, 0, 3, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0], [0, 0, 3, 0, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0], [0, 0, 3, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 6, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0], [0, 6, 0, 0, 0, 0, 3, 0, 0, 0, 0, 5, 5, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 5, 5, 1, 2, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 4], [6, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 7, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 3, 2, 0, 0, 0, 0, 0, 0], [0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0], [0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
|
|
@ -1,31 +1,6 @@
|
|||||||
import pygame
|
|
||||||
|
|
||||||
from ui.screens.screen import Screen
|
from ui.screens.screen import Screen
|
||||||
from common.colors import BLACK
|
|
||||||
from common.helpers import draw_text
|
|
||||||
|
|
||||||
class Credits(Screen):
|
class Credits(Screen):
|
||||||
|
|
||||||
def __init__(self, screen, clock):
|
def __init__(self, screen, clock):
|
||||||
super().__init__('credits', screen, clock)
|
super().__init__('credits', screen, clock)
|
||||||
|
|
||||||
def display_screen(self):
|
|
||||||
running = True
|
|
||||||
while running:
|
|
||||||
self.screen.fill((252, 164, 12))
|
|
||||||
draw_text('Twórcy :', BLACK, self.screen, 520, 150)
|
|
||||||
draw_text('Angelika Iskra', BLACK, self.screen, 520, 250)
|
|
||||||
draw_text('Dawid Korzępa', BLACK, self.screen, 520, 300)
|
|
||||||
draw_text('Juliusz Sadowski', BLACK, self.screen, 520, 350)
|
|
||||||
draw_text('Aleksandra Muczyńska', BLACK, self.screen, 520, 400)
|
|
||||||
draw_text('Jerzy Tomaszewski', BLACK, self.screen, 520, 450)
|
|
||||||
draw_text('Mateusz Konofał', BLACK, self.screen, 520, 500)
|
|
||||||
for event in pygame.event.get():
|
|
||||||
if event.type == pygame.QUIT:
|
|
||||||
running = False
|
|
||||||
if event.type == pygame.KEYDOWN:
|
|
||||||
if event.key == pygame.K_ESCAPE:
|
|
||||||
running = False
|
|
||||||
pygame.display.update()
|
|
||||||
self.clock.tick(60)
|
|
||||||
|
|
||||||
|
16
ui/stats.py
@ -23,8 +23,6 @@ class Stats:
|
|||||||
pygame.Rect(self.x + 210, self.y + 210, 100, 15),
|
pygame.Rect(self.x + 210, self.y + 210, 100, 15),
|
||||||
current_hp=sum([knight.get_current_hp() for knight in self.list_knights_red]),
|
current_hp=sum([knight.get_current_hp() for knight in self.list_knights_red]),
|
||||||
max_hp=sum([knight.get_max_hp() for knight in self.list_knights_red]))
|
max_hp=sum([knight.get_max_hp() for knight in self.list_knights_red]))
|
||||||
self.blue_team_points = 0
|
|
||||||
self.red_team_points = 0
|
|
||||||
|
|
||||||
def update(self):
|
def update(self):
|
||||||
|
|
||||||
@ -52,16 +50,12 @@ class Stats:
|
|||||||
|
|
||||||
# texts
|
# texts
|
||||||
draw_text('Rycerze: ' + str(len(self.list_knights_blue)), FONT_DARK, self.screen, self.x + 35, self.y + 240, 18) # blue
|
draw_text('Rycerze: ' + str(len(self.list_knights_blue)), FONT_DARK, self.screen, self.x + 35, self.y + 240, 18) # blue
|
||||||
|
draw_text('Fortece: ' + str(len(self.list_knights_red)), FONT_DARK, self.screen, self.x + 35, self.y + 270, 18) # red
|
||||||
|
|
||||||
draw_text('Rycerze: ' + str(len(self.list_knights_red)), FONT_DARK, self.screen, self.x + 215, self.y + 240, 18)
|
draw_text('Rycerze: 4', FONT_DARK, self.screen, self.x + 215, self.y + 240, 18)
|
||||||
|
draw_text('Fortece: 0', FONT_DARK, self.screen, self.x + 215, self.y + 270, 18)
|
||||||
|
|
||||||
# points
|
# points
|
||||||
pygame.draw.rect(self.screen, ORANGE, pygame.Rect(self.x, self.y + 390, 340, 3))
|
pygame.draw.rect(self.screen, ORANGE, pygame.Rect(self.x, self.y + 390, 340, 3))
|
||||||
draw_text('PUNKTY: ' + str(self.blue_team_points), FONT_DARK, self.screen, self.x + 35, self.y + 408, 18, True)
|
draw_text('PUNKTY: 10', FONT_DARK, self.screen, self.x + 35, self.y + 408, 18, True)
|
||||||
draw_text('PUNKTY: ' + str(self.red_team_points), FONT_DARK, self.screen, self.x + 215, self.y + 408, 18, True)
|
draw_text('PUNKTY: 10', FONT_DARK, self.screen, self.x + 215, self.y + 408, 18, True)
|
||||||
|
|
||||||
def add_points(self, team, points):
|
|
||||||
if team == "blue":
|
|
||||||
self.blue_team_points += points
|
|
||||||
else:
|
|
||||||
self.red_team_points += points
|
|
||||||
|