genetic_alg_angela #31
@ -1,4 +1,7 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
import numpy as np
|
||||
|
||||
from const import *
|
||||
from typing import List, Dict, Tuple
|
||||
|
||||
@ -11,6 +14,56 @@ class Position:
|
||||
col: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class Area:
|
||||
position: Position
|
||||
width: int
|
||||
height: int
|
||||
|
||||
|
||||
AREAS_TO_CROSS = [
|
||||
# up above left knights spawn
|
||||
Area(position=Position(row=0, col=0),
|
||||
width=KNIGHTS_SPAWN_WIDTH,
|
||||
height=LEFT_KNIGHTS_SPAWN_FIRST_ROW),
|
||||
|
||||
# down below left knights spawn
|
||||
Area(position=Position(row=LEFT_KNIGHTS_SPAWN_FIRST_ROW + KNIGHTS_SPAWN_HEIGHT, col=0),
|
||||
width=KNIGHTS_SPAWN_WIDTH,
|
||||
height=ROWS - LEFT_KNIGHTS_SPAWN_FIRST_ROW - KNIGHTS_SPAWN_HEIGHT),
|
||||
|
||||
# between left knights spawn and castle
|
||||
Area(position=Position(row=0, col=KNIGHTS_SPAWN_WIDTH),
|
||||
width=CASTLE_SPAWN_FIRST_COL - KNIGHTS_SPAWN_WIDTH,
|
||||
height=ROWS),
|
||||
|
||||
# up above castle
|
||||
Area(position=Position(row=0, col=CASTLE_SPAWN_FIRST_COL),
|
||||
width=2,
|
||||
height=CASTLE_SPAWN_FIRST_ROW),
|
||||
|
||||
# down below castle
|
||||
Area(position=Position(row=CASTLE_SPAWN_FIRST_ROW + 2, col=CASTLE_SPAWN_FIRST_COL),
|
||||
width=2,
|
||||
height=ROWS - CASTLE_SPAWN_FIRST_ROW - 2),
|
||||
|
||||
# between castle and right knights spawn
|
||||
Area(position=Position(row=0, col=CASTLE_SPAWN_FIRST_COL + 2),
|
||||
width=RIGHT_KNIGHTS_SPAWN_FIRST_COL - CASTLE_SPAWN_FIRST_COL - 2,
|
||||
height=ROWS),
|
||||
|
||||
# up above right knights spawn
|
||||
Area(position=Position(row=0, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
|
||||
width=KNIGHTS_SPAWN_WIDTH,
|
||||
height=RIGHT_KNIGHTS_SPAWN_FIRST_ROW),
|
||||
|
||||
# down below right knights spawn
|
||||
Area(position=Position(row=RIGHT_KNIGHTS_SPAWN_FIRST_ROW + KNIGHTS_SPAWN_HEIGHT, col=RIGHT_KNIGHTS_SPAWN_FIRST_COL),
|
||||
width=KNIGHTS_SPAWN_WIDTH,
|
||||
height=ROWS - RIGHT_KNIGHTS_SPAWN_FIRST_ROW - KNIGHTS_SPAWN_HEIGHT),
|
||||
]
|
||||
|
||||
|
||||
def dfs(grid: npt.NDArray, visited: Dict[Tuple[int, int], bool], position: Position, rows: int, cols: int) -> None:
|
||||
visited[(position.row, position.col)] = True
|
||||
|
||||
@ -51,3 +104,19 @@ def get_islands(grid: npt.NDArray, positions: List[Position], rows: int = ROWS,
|
||||
islands += 1
|
||||
|
||||
return roots
|
||||
|
||||
|
||||
def find_neighbours(grid: npt.NDArray, col: int, row: int) -> List[Position]:
|
||||
dr = [-1, 1, 0, 0]
|
||||
dc = [0, 0, -1, 1]
|
||||
|
||||
neighbours = []
|
||||
|
||||
for i in range(4):
|
||||
rr = row + dr[i]
|
||||
cc = col + dc[i]
|
||||
|
||||
if 0 <= rr < ROWS and 0 <= cc < COLUMNS and grid[rr][cc] == MAP_ALIASES.get('GRASS'):
|
||||
neighbours.append(Position(row=rr, col=cc))
|
||||
|
||||
return neighbours
|
||||
|
@ -13,6 +13,8 @@ LEFT_KNIGHTS_SPAWN_FIRST_ROW = 6
|
||||
LEFT_KNIGHTS_SPAWN_FIRST_COL = 0
|
||||
RIGHT_KNIGHTS_SPAWN_FIRST_ROW = 6
|
||||
RIGHT_KNIGHTS_SPAWN_FIRST_COL = 20
|
||||
CASTLE_SPAWN_FIRST_ROW = 7
|
||||
CASTLE_SPAWN_FIRST_COL = 11
|
||||
|
||||
# map aliases
|
||||
MAP_ALIASES = {
|
||||
|
@ -1,10 +1,13 @@
|
||||
import math
|
||||
import random
|
||||
from copy import deepcopy
|
||||
from random import randrange
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
from common import Position
|
||||
from common import Position, get_islands, AREAS_TO_CROSS, find_neighbours
|
||||
from const import *
|
||||
|
||||
|
||||
@ -16,11 +19,15 @@ class Genome:
|
||||
trees: List[Position]
|
||||
sands: List[Position]
|
||||
monsters: List[Position]
|
||||
fitness: int
|
||||
sand_islands: List[Position]
|
||||
tree_islands: List[Position]
|
||||
water_islands: List[Position]
|
||||
|
||||
def __init__(self):
|
||||
self.grid = np.zeros((ROWS, COLUMNS), dtype=int)
|
||||
self.fitness = 0
|
||||
|
||||
# todo: spawning castle, monsters, sand, trees in the same way as bellow
|
||||
self.knights_red = spawn_objects_in_given_area(
|
||||
grid=self.grid,
|
||||
object_alias=MAP_ALIASES.get("KNIGHT_RED"),
|
||||
@ -43,7 +50,7 @@ class Genome:
|
||||
grid=self.grid,
|
||||
object_alias=MAP_ALIASES.get("CASTLE"),
|
||||
objects_count=4,
|
||||
spawn_position_start=Position(row=7, col=9),
|
||||
spawn_position_start=Position(row=CASTLE_SPAWN_FIRST_ROW, col=CASTLE_SPAWN_FIRST_COL),
|
||||
width=2,
|
||||
height=2
|
||||
)
|
||||
@ -57,6 +64,62 @@ class Genome:
|
||||
self.monsters = spawn_objects_in_given_area(grid=self.grid, object_alias=MAP_ALIASES.get("MONSTER"),
|
||||
objects_count=MONSTERS_COUNT)
|
||||
|
||||
self.sand_islands = get_islands(self.grid, self.sands)
|
||||
self.tree_islands = get_islands(self.grid, self.trees)
|
||||
self.water_islands = get_islands(self.grid, self.waters)
|
||||
|
||||
def calc_fitness(self):
|
||||
score = SAND_COUNT + TREE_COUNT + WATER_COUNT
|
||||
score = score - len(self.sand_islands) - len(self.tree_islands) - len(self.water_islands)
|
||||
|
||||
# todo: odległość manhattan od każdej wyspy
|
||||
|
||||
self.fitness = score
|
||||
|
||||
def crossover(self, partner):
|
||||
# replace a randomly selected part of the grid with partner's part
|
||||
child = Genome()
|
||||
child.grid = deepcopy(self.grid)
|
||||
area_to_cross = random.choice(AREAS_TO_CROSS)
|
||||
|
||||
for row in range(area_to_cross.position.row, area_to_cross.position.row + area_to_cross.height):
|
||||
for col in range(area_to_cross.position.col, area_to_cross.position.col + area_to_cross.width):
|
||||
child.grid[row][col] = partner.grid[row][col]
|
||||
|
||||
child.sand_islands = get_islands(self.grid, self.sands)
|
||||
child.tree_islands = get_islands(self.grid, self.trees)
|
||||
child.water_islands = get_islands(self.grid, self.waters)
|
||||
|
||||
return child
|
||||
|
||||
def mutate(self, mutation_rate: float):
|
||||
# remove 1 item from a random island and add a neighbor to another island
|
||||
if random.random() < mutation_rate:
|
||||
|
||||
# select islands of the same, random type
|
||||
islands_of_same_type = random.choice([self.sand_islands, self.tree_islands, self.water_islands])
|
||||
random_index = random.randint(0, len(islands_of_same_type) - 1)
|
||||
island = islands_of_same_type[random_index]
|
||||
next_island = islands_of_same_type[(random_index + 1) % len(islands_of_same_type)]
|
||||
|
||||
free_tiles_nearby = find_neighbours(self.grid, next_island.col, next_island.row)
|
||||
|
||||
tile_type = self.grid[island.row][island.col]
|
||||
|
||||
self.grid[island.row][island.col] = MAP_ALIASES.get('GRASS')
|
||||
islands_of_same_type.remove(island)
|
||||
|
||||
# todo: if there are no free tiles around then randomize another next_island
|
||||
if len(free_tiles_nearby) > 0:
|
||||
random_free_tile = random.choice(free_tiles_nearby)
|
||||
island.row = random_free_tile.row
|
||||
island.col = random_free_tile.col
|
||||
self.grid[island.row][island.col] = tile_type
|
||||
|
||||
self.sand_islands = get_islands(self.grid, self.sands)
|
||||
self.tree_islands = get_islands(self.grid, self.trees)
|
||||
self.water_islands = get_islands(self.grid, self.waters)
|
||||
|
||||
|
||||
def is_empty(grid: npt.NDArray, position: Position) -> bool:
|
||||
return grid[position.row, position.col] in [MAP_ALIASES.get("GRASS"), MAP_ALIASES.get("SAND")]
|
||||
|
@ -1,16 +1,25 @@
|
||||
from map_importer_exporter import export_map
|
||||
from genome import Genome
|
||||
from common import get_islands
|
||||
from algorithms.genetic.genome import Genome
|
||||
from algorithms.genetic.map_importer_exporter import export_map
|
||||
from population import Population
|
||||
|
||||
|
||||
def main() -> None:
|
||||
example_genome = Genome()
|
||||
print(example_genome.knights_red)
|
||||
print(example_genome.knights_blue)
|
||||
print(example_genome.grid)
|
||||
islands = get_islands(example_genome.grid, example_genome.knights_red)
|
||||
print(f'Roots {islands} and islands count {len(islands)}')
|
||||
# export_map(example_genome.grid) fixme: FileNotFoundError
|
||||
population_size = 500
|
||||
mutation_rate = 0.4
|
||||
|
||||
population = Population(mutation_rate, population_size, 27)
|
||||
|
||||
while not population.evaluate():
|
||||
# create next generation
|
||||
population.generate()
|
||||
|
||||
# calc fitness
|
||||
population.calc_fitness()
|
||||
|
||||
print(population.best_genome.grid)
|
||||
print("Fitness of the best: ", population.best_genome.fitness)
|
||||
|
||||
export_map(population.best_genome.grid)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -2,22 +2,24 @@ import json
|
||||
import random
|
||||
import string
|
||||
from datetime import datetime
|
||||
|
||||
from pathlib import Path
|
||||
import numpy
|
||||
import numpy.typing as npt
|
||||
from os import listdir
|
||||
from os.path import isfile, join
|
||||
|
||||
|
||||
|
||||
# Save map to file
|
||||
def export_map(grid: npt.NDArray):
|
||||
json_data = {"map": grid.tolist()}
|
||||
|
||||
now = datetime.now()
|
||||
file_name = "map_" + now.strftime("%Y_%m_%d_%H_%M_%S") + ".json"
|
||||
path = Path("../../resources/maps/")
|
||||
file_to_open = path / file_name
|
||||
|
||||
with open("resources/maps/" + file_name, "w") as write_file:
|
||||
print(file_to_open)
|
||||
with open(file_to_open, "w+") as write_file:
|
||||
json.dump(json_data, write_file)
|
||||
print("Saved map to file " + file_name)
|
||||
|
||||
@ -30,9 +32,10 @@ def import_random_map() -> object:
|
||||
|
||||
|
||||
# Read map from file
|
||||
def import_map(file: string) -> object:
|
||||
with open("resources/maps/" + file, "r") as read_file:
|
||||
print("Reading map from file " + file)
|
||||
def import_map(file_name: string) -> object:
|
||||
file_to_open = "resources/maps/" + file_name
|
||||
with open(file_to_open, "r") as read_file:
|
||||
print("Reading map from file " + file_name)
|
||||
decoded_json = json.load(read_file)
|
||||
|
||||
decoded_grid = numpy.asarray(decoded_json["map"])
|
||||
|
81
algorithms/genetic/population.py
Normal file
81
algorithms/genetic/population.py
Normal file
@ -0,0 +1,81 @@
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
from genome import Genome
|
||||
|
||||
|
||||
class Population:
|
||||
population: List[Genome] = [] # array to hold the current population
|
||||
mating_pool: List[Genome] = [] # array which we will use for our "mating pool"
|
||||
generations: int = 0 # number of generations
|
||||
finished: bool = False # are we finished evolving?
|
||||
mutation_rate: float
|
||||
perfect_score: int
|
||||
best_genome: Genome
|
||||
|
||||
def __init__(self, mutation_rate, population_size, perfect_score=20):
|
||||
self.mutation_rate = mutation_rate
|
||||
self.perfect_score = perfect_score
|
||||
|
||||
for i in range(0, population_size):
|
||||
new_genome = Genome()
|
||||
new_genome.calc_fitness()
|
||||
self.population.append(new_genome)
|
||||
|
||||
# create a new generation
|
||||
def generate(self):
|
||||
max_fitness = 0
|
||||
for genome in self.population:
|
||||
if genome.fitness > max_fitness:
|
||||
max_fitness = genome.fitness
|
||||
|
||||
print("Max fitness of generation " + str(self.generations) + " = " + str(max_fitness))
|
||||
|
||||
# refill the population with children from the mating pool
|
||||
new_population = []
|
||||
for genome in self.population:
|
||||
partner_a = self.accept_reject(max_fitness)
|
||||
partner_b = self.accept_reject(max_fitness)
|
||||
child = partner_a.crossover(partner_b)
|
||||
child.mutate(self.mutation_rate)
|
||||
new_population.append(child)
|
||||
|
||||
self.population = new_population
|
||||
self.generations += 1
|
||||
|
||||
# select random with correct probability from population
|
||||
def accept_reject(self, max_fitness: int):
|
||||
safe_flag = 0
|
||||
|
||||
while safe_flag < 10000:
|
||||
partner = random.choice(self.population)
|
||||
r = random.randint(0, max_fitness)
|
||||
|
||||
if r < partner.fitness:
|
||||
return partner
|
||||
|
||||
safe_flag += 1
|
||||
|
||||
# compute the current "most fit" member of the population
|
||||
def evaluate(self):
|
||||
record = 0
|
||||
best_index = 0
|
||||
|
||||
for index in range(len(self.population)):
|
||||
genome = self.population[index]
|
||||
if genome.fitness > record:
|
||||
record = genome.fitness
|
||||
best_index = index
|
||||
|
||||
self.best_genome = self.population[best_index]
|
||||
if record >= self.perfect_score:
|
||||
self.finished = True
|
||||
|
||||
return self.finished
|
||||
|
||||
def calc_fitness(self):
|
||||
for genome in self.population:
|
||||
genome.calc_fitness()
|
0
algorithms/neural_network/__init__.py
Normal file
0
algorithms/neural_network/__init__.py
Normal file
@ -1 +0,0 @@
|
||||
{"map": [[0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 4, 2, 3, 0, 0, 3, 3, 0, 3, 4, 0, 0], [0, 3, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [3, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0], [3, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 6, 0, 0, 0, 0, 3, 5, 5, 0, 0, 0, 0, 1, 0, 1, 3, 0, 0, 7, 0, 0], [2, 0, 3, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0], [6, 6, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 6, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 2, 2, 0, 2, 0, 3, 0, 0, 7, 0], [0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0], [1, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0], [0, 2, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
|
@ -1 +0,0 @@
|
||||
{"map": [[0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 3, 0, 0], [0, 0, 0, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 2, 1, 2, 3, 0, 3, 0, 0, 0, 0], [3, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0], [0, 6, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 3, 0, 0, 7, 7], [0, 0, 3, 2, 0, 0, 0, 0, 0, 5, 5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 6, 0, 0, 0, 0, 1, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0], [0, 0, 6, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 3, 0, 7, 0], [0, 6, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0], [0, 3, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 7, 0, 0], [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 3, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 3, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
|
@ -1 +0,0 @@
|
||||
{"map": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0], [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0], [0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0], [2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0], [0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0], [6, 0, 0, 0, 1, 2, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 3, 0, 0, 0, 5, 5, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 7, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0], [6, 2, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 7, 0, 7], [0, 3, 6, 2, 0, 3, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 3, 3, 0, 0, 0, 4, 0, 0, 0, 3, 1, 0, 0, 0], [0, 3, 2, 3, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
|
1
resources/maps/map_2022_06_02_00_36_19.json
Normal file
1
resources/maps/map_2022_06_02_00_36_19.json
Normal file
@ -0,0 +1 @@
|
||||
{"map": [[3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 1, 1, 0], [2, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 3, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0], [0, 0, 6, 0, 1, 3, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 3, 0, 0, 0, 0, 0, 7, 0], [0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 1, 5, 5, 0, 0, 1, 0, 3, 0, 0, 3, 7, 0, 0], [0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 6, 6, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0], [0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 6, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 7, 0], [0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 3, 0, 3, 0, 3, 3], [3, 1, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 1, 3, 0, 1, 0], [0, 0, 0, 0, 3, 3, 3, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 0, 0]]}
|
1
resources/maps/map_2022_06_02_00_38_31.json
Normal file
1
resources/maps/map_2022_06_02_00_38_31.json
Normal file
@ -0,0 +1 @@
|
||||
{"map": [[0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 3, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0], [1, 2, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0], [6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 0, 3, 0, 0, 0, 2, 3, 0, 3, 0, 5, 5, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0], [0, 1, 0, 2, 3, 0, 0, 0, 2, 0, 0, 5, 5, 3, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0], [0, 6, 6, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 3], [0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 2, 0, 0, 0, 2, 0, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3], [2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3], [3, 0, 0, 0, 3, 3, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0]]}
|
1
resources/maps/map_2022_06_02_00_42_44.json
Normal file
1
resources/maps/map_2022_06_02_00_42_44.json
Normal file
@ -0,0 +1 @@
|
||||
{"map": [[0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0], [0, 0, 0, 0, 0, 6, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0], [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0], [2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 1], [0, 0, 0, 6, 0, 0, 0, 6, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 3, 5, 5, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 6, 3, 0, 0, 0, 0, 0, 0, 5, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 7, 7], [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0], [0, 0, 0, 0, 1, 0, 3, 0, 0, 3, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 2, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 6, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 3, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0], [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0]]}
|
Loading…
Reference in New Issue
Block a user